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Introduction

The parallel-container template library (pctl) is a C++ library that is currently
under development by members of the Deepsea Project. The goal of the pctl is
to provide a rich collection of parallel data structures, along with efficient data-
parallel algorithms, such as merging, sorting, reduction, etc. We are designing
pctl to target shared-memory, parallel (i.e., multicore) platforms.

Our design borrows to a large extent the conventions used by the Standard
Template Library. However, when these conventions come into conflict with
parallelism, we break with the STL convention.

The pctl provides a rigorous framework for reasoning about the cost of pctl
operations. The cost model employed by pctl is the work/span model, which is
provided by systems, such as Cilk Plus and pasl. Moreover, pctl implements a
granularity-control technique that is helpful for taming overheads that relate to
parallelization.

The sources of the pctl are made available by a github repository.

Preliminaries

We have implemented pctl to be compatible with the C++11 standard. Earlier
versions of the C++ standard may be incompatible.

Downloading and building a pctl program

The pctl library itself consists of several C++ header files. As such, to use the
pctl in a C++ project, one must first obtain the source code and then, in order
to build with pctl support, pass to the compiler the paths to the required header
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files. First, let us begin by downloading the loader script get.sh. Now, the same
directory, run the script, specifying the folder in which to store pctl and its
dependencies.

$ wget http://deepsea.inria.fr/pctl/get.sh
$ get.sh /home/foo/pctl-install/

The above command should clone the git repository of the pctl along with the
repositories of its two package dependencies, namely cmdline and chunkedseq.
In the example above, our script should have created directories pctl, cmdline,
and chunkedseq in the path named /home/foo/pctl-install/. Any target
path name will do.

Now, let us turn to building a small program, shown below, that specifies an
array and computes the sum of the elements.

#include "datapar.hpp"

int main() {
parray<int> xs = { 43, 3222, 11232, 30, 9, -3 };
int r = pasl::pctl::sum(xs.begin(), xs.end());
std::cout << "sum(xs) = " << r << std::endl;
return 0;

}

Supposing that we put this program in a file named sum.cpp, we can use the
following command sequence to build and run an executable.

$ g++ -std=c++11 `print-include-directives.sh /home/foo/pctl-install/`
sum.cpp -o sum.exe
$ sum.exe
sum(xs) = 14533

The above program is not compiled with support for parallel execution. Con-
sequently, all calls to pctl functions are going to be performed in a sequential
fashion. If we want parallel speedup, we need to pick the parallel library or
language that we wish to target and use the appropriate configuration.

Parallelism in pctl can be realized by any library or language extension that
brings fork-join parallelism to C++. The following table summarizes which of
these systems are currently supported by pctl.

Table 1: Libraries and language extensions that are currently sup-
ported by pctl.

Compiler flag Description
Sequential
elision
(default)

USE_SEQUENTIAL_ELISION_RUNTIME Sequentializes all
opportunities for
parallelism.
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Cilk Plus USE_CILK_PLUS_RUNTIME Uses the Cilk Plus
language extension to
realize parallelism.

PASL USE_PASL_RUNTIME Uses the PASL system to
realize parallelism.

To build the example shown above, but with support for Cilk Plus, first make sure
that you are using gcc >= 5.0 or a recent version of clang/llvm that supports
Cilk Plus extensions. If so, the command shown below will build a parallel-ready
binary.

$ g++ -std=c++11 `print-include-directives.sh /home/foo/pctl-install/`
-fcilkplus -lcilkrts -DUSE_CILK_PLUS_RUNTIME sum.cpp -o sum.exe
...

TODO document pasl support

The substrate for expressing parallelism

Binary fork join

namespace pasl {
namespace pctl {

template <class First_function, class Second_function>
void fork2(First_function f1, Second_function f2);

} }

In the pctl, an opportunity for parallelism can be expressed by an application of
the binary fork-join primitive. The interface of this primitive is shown above.
The call fork2(f1, f2) performs the calls f1() and f2(), allowing both calls
to run in parallel. To see how we might use this primitive, consider the program
below.

#include "datapar.hpp"

using namespace pasl::pctl;

template <class Iterator>
int my_sum(Iterator lo, Iterator hi) {

int result = 0;
int n = hi - lo;
if (n == 0)

result = 0;
} else if (n == 1) {
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result = *lo;
} else {

Iterator mid = lo + (n / 2);
int result1, result2;
fork2([&] {

result1 = sum(lo, mid);
}, {

result2 = sum(mid, hi);
});
result = result1 + result2;

}
return result;

}

int main() {
parray<int> xs = { 43, 3222, 11232, 30, 9, -3 };
std::cout << "my_sum(xs) = " << my_sum(xs.begin(), xs.end()) << std::endl;
return 0;

}

In this program, we have a function named my_sum that returns the sum of a
range of items in some container, realizing parallelism via the call to the pctl
fork-join primitive. Unfortunately, this program is naive because of the very
fine-grain use of the binary fork-join primitive. The good news is that, with a
little extra annotation in the source code, one can easily bypass this problem
and obtain a fast, clean, and concise solution.

Although parallel systems, such as Cilk Plus and PASL, are carefully engineered
to control overheads, the reality is that, in general, these overheads may still
be large enough to seriously harm performance. This problem is known as
the problem of granularity control. One way to characterize the granularity-
control problem is as follows. On the one hand, if the program tries to exploit
too many opportunities for parallelism, then the program will be slow due to
overheads of the parallel primitives. On the other, if the program realizes too
little parallelism, the program will be slow because of underutilized processors.
For this reason, programmers often resort to manual granularity control, whereby
a threshold is used to prune parallelism. In the my_sum function shown above,
for example, one may address the problem by stopping recursion below some
specified threshold.

Unfortunately, such a manual approach has some severe problems of its own. In
brief, manual granularity control is not portable across different platforms and
does not compose well in situations where the program uses nested parallelism or
higher-order functions, such as map and reduce. Although well understood, there
is currently no silver bullet to solve the granularity-control problem in general.
However, there is one approach, named oracle-based granulariy control, that
achieves mostly automatic granularity control. The original idea is described in
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some recent research publications. The pctl implements a particular incarnation
of oracle-guided scheduling.

Mostly automatic granularity control

In the pctl, oracle-guided scheduling is implemented by a mechanism called the
controlled statement. A controlled statement is (1) a block of code, expressed
as a lambda function, that, when called, performs some specified parallel compu-
tation and (2) a complexity function that specifies the asymptotic complexity
of the block of code.

namespace pasl {
namespace pctl {

// (1)
template <class Complexity_function, class Body>
void cstmt(Complexity_function cf, Body b);

// (2)
template <class Complexity_function, class Parallel_body, class Sequential_body>
void cstmt(Complexity_function cf, Parallel_body pb, Sequential_body sb);

} }

There are two variants of the controlled statement. Let us focus on the first one
for now because the first one is simpler. The call cstmt(cf, b) performs the call
b(), using the result of cf() to help determine whether to realize opportunities
for parallelism or to execute the call b() serially. In the code shown below, we
see how to extend our my_sum function to achieve granularity control by use of
the controlled statement.

template <class Iterator>
int my_sum(Iterator lo, Iterator hi) {

int result = 0;
int n = hi - lo;
cstmt([&] { return n; }, [&] {

if (n == 0)
result = 0;

} else if (n == 1) {
result = *lo;

} else {
Iterator mid = lo + (n / 2);
int result1, result2;
fork2([&] {

result1 = sum(lo, mid);
}, {
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result2 = sum(mid, hi);
});
result = result1 + result2;

}
});
return result;

}

Now, with the above code, we have a much more efficient program than we
had before because we are using automatic granularity control to deal with
parallelism-related overheads. But we can do better in this case because we
have a my_sum function for which the serial portion of the computation can be
expressed more efficiently as a serial loop.

For this reason, the pctl provides the second variant of the controlled statement.
The call cstmt(cf, pb, sb) performs the call pb() if the system chooses to
execute the given computation in a parallel fashion and the call sb() if the system
chooses to sequentialize the call. As before, the result cf() of the complexity
function is used by the system to determine whether to use parallel or serial
execution. We can modify our my_sum example as shown below to use a serial
body.

template <class Iterator>
int my_sum(Iterator lo, Iterator hi) {

int result = 0;
int n = hi - lo;
cstmt([&] { return n; }, [&] {

// parallel body
if (n == 0)

result = 0;
} else if (n == 1) {

result = *lo;
} else {

Iterator mid = lo + (n / 2);
int result1, result2;
fork2([&] {

result1 = sum(lo, mid);
}, {

result2 = sum(mid, hi);
});
result = result1 + result2;

}
}, [&] {

// serial body
for (; lo != hi; lo++) {

result += *lo;
}
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});
return result;

}

Containers

Our definition of a conainer is the same as that of STL: a container is a holder
object that stores a collection of other objects (its elements). Elements are
implemented as class templates, which allows flexibility to specify at compile
time the type of the elements to be stored in any given container.

The container manages the storage space for its elements and provides member
functions to access them, either directly or through iterators (reference objects
with similar properties to pointers).

The particular containers defined by pctl fill what we believe are important
gaps in the current state-of-the-art C++ container libraries. In specific, the
gaps relate to data structures that can always be resized and accessed efficiently
in parallel. Note that, although we designed the pctl containers to useful for
parallel programming, we have not designed them to be useful for concurrent
programming. A discussion of the difference between parallel and concurrent
programming is out of the scope of this manual, but can be found here. What this
property means for clients of pctl is that the container operations that modify
the container (e.g., push or pop) generally are not thread safe. Parallelism is
achieved instead by operating in parallel on disjoint ranges of, say, the same
sequence, or by splitting and merging sequences in a fork-join fashion.

Sequence containers

Table 2: Sequence containers that are provided by pctl.

Class name Description
parray Contiguous array class
pchunkedseq Discontiguous, efficiently resizable sequence class

Associative containers

Table 3: Associative containers that are provided by pctl.

Class name Description
pset Set class
pmap Associative-map class
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Class name Description

String containers

Table 4: String containers that are provided by pctl.

Class name Description
pstring Array-based string class

Parallel array

namespace pasl {
namespace pctl {

template <class Item, class Alloc = std::allocator<Item>>
class parray;

} }

Parallel arrays are containers representing arrays that are populated with their
elements in parallel. Although they can be resized, the work cost of resizing a
parallel array is linear. In other words, parallel arrays are good for bulk-parallel
processing, but not so good for incremental updates.

Just like traditional C++ arrays (i.e., raw memory allocated by, say, malloc),
parallel arrays use contiguous storage to hold their elements. As such, elements
can be accessed as efficiently as C arrays by using offsets or by using pointer
values. Unlike C arrays, storage is managed automatically by the container.
Moreover, unlike C arrays, parallel arrays initialize and de-initialize their cells in
parallel.

Template parameters

Table 5: Template parameters for the parray class.

Template parameter Description
Item Type of the objects to be stored in

the container
Alloc Allocator to be used by the container

to construct and destruct objects of
type Item
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Template parameter Description

Item type

class Item;

Type of the elements. Only if Item is guaranteed to not throw while moving,
implementations can optimize to move elements instead of copying them during
reallocations. Aliased as member type parray::value_type.

Allocator

class Alloc;

Type of the allocator object used to define the storage allocation model.
By default, the allocator class template is used, which defines the simplest
memory allocation model and is value-independent. Aliased as member type
parray::allocator_type.

Member types

Table 6: Parallel-array member types.

Type Description
value_type Alias for template parameter Item
reference Alias for value_type&
const_reference Alias for const value_type&
pointer Alias for value_type*
const_pointer Alias for const value_type*
iterator Iterator
const_iterator Const iterator

Iterator

The type iterator and const_iterator are instances of the random-access
iterator concept.

Constructors and destructors
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Table 7: Parallel-array constructors and destructors.

Constructor Description
empty container constructor (default
constructor)

constructs an empty container with
no items

fill constructor constructs a container with a
specified number of copies of a given
item

populate constructor constructs a container with a
specified number of values that are
computed by a specified function

copy constructor constructs a container with a copy of
each of the items in the given
container, in the same order

initializer list constructs a container with the items
specified in a given initializer list

move constructor constructs a container that acquires
the items of a given parallel array

destructor destructs a container

Empty container constructor

parray();

Complexity. Constant time.

Constructs an empty container with no items;

Fill container

parray(long n, const value_type& val);

Constructs a container with n copies of val.

Complexity. Work and span are linear and logarithmic in the size of the
resulting container, respectively.

Populate constructor

// (1) Constant-time body
parray(long n, std::function<Item(long)> body);
// (2) Non-constant-time body
parray(long n,

std::function<long(long)> body_comp,
std::function<Item(long)> body);

10



// (3) Non-constant-time body along with range-based complexity function
parray(long n,

std::function<long(long,long)> body_comp_rng,
std::function<Item(long)> body);

Constructs a container with n cells, populating those cells with values returned
by the n calls, body(0), body(1), . . . , body(n-1), in that order.

In the second version, the value returned by body_comp(i) is used by the
constructor as the complexity estimate for the call body(i).

In the third version, the value returned by body_comp(lo, hi) is used by the
constructor as the complexity estimate for the calls body(lo), body(lo+1), . . .
body(hi-1).

Complexity. The work and span cost are (
∑

0≤i<n w(i)) and (log n +
max0≤i<n s(i)), respectively, where w(i) represents the work cost of computing
body(i) and s(i) the corresponding span cost.

Copy constructor

parray(const parray& other);

Constructs a container with a copy of each of the items in other, in the same
order.

Complexity. Work and span are linear and logarithmic in the size of the
resulting container, respectively.

Initializer-list constructor

parray(initializer_list<value_type> il);

Constructs a container with the items in il.

Complexity. Work and span are linear in the size of the resulting container.

Move constructor

parray(parray&& x);

Constructs a container that acquires the items of other.

Complexity. Constant time.
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Destructor

~parray();

Destructs the container.

Complexity. Work and span are linear and logarithmic in the size of the
container, respectively.

Member functions

Table 8: Parallel-array member functions.

Operation Description
operator[] Access member item
size Return size
clear Empty container contents
resize Change size
swap Exchange contents
begin cbegin Returns an iterator to the beginning
end cend Returns an iterator to the end

Indexing operator

reference operator[](long i);
const_reference operator[](long i) const;

Returns a reference at the specified location i. No bounds check is performed.

Complexity. Constant time.

Size operator

long size() const;

Returns the size of the container.

Complexity. Constant time.

Clear

void clear();

Erases the contents of the container, which becomes an empty container.
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Complexity. Work and span are linear and logarithmic in the size of the
container, respectively.

Iterator validity. Invalidates all iterators, if the size before the operation
differs from the size after.

Resize

void resize(long n, const value_type& val); // (1)
void resize(long n) { // (2)

value_type val;
resize(n, val);

}

Resizes the container to contain n items.

If the current size is greater than n, the container is reduced to its first n elements.

If the current size is less than n,

1. additional copies of val are appended
2. additional default-inserted elements are appended

Complexity. Let m be the size of the container just before and n just after
the resize operation. Then, the work and span are linear and logarithmic in
max(m, n), respectively.

Iterator validity. Invalidates all iterators, if the size before the operation
differs from the size after.

Exchange operation

void swap(parray& other);

Exchanges the contents of the container with those of other. Does not invoke
any move, copy, or swap operations on individual items.

Complexity. Constant time.

Iterator begin

iterator begin() const;
const_iterator cbegin() const;

Returns an iterator to the first item of the container.

If the container is empty, the returned iterator will be equal to end().

Complexity. Constant time.
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Iterator end

iterator end() const;
const_iterator cend() const;

Returns an iterator to the element following the last item of the container.

This element acts as a placeholder; attempting to access it results in undefined
behavior.

Complexity. Constant time.

Parallel chunked sequence

namespace pasl {
namespace pctl {

template <class Item, class Alloc = std::allocator<Item>>
class pchunkedseq;

} }

Parallel chunked sequences are containers representing sequences. Elements of
the container are populated with their elements in parallel. The container itself
can be resized in an incremental fashion in amortized constant time and can be
split at a specified position and concatenated in logarithmic time.

Unlike parallel arrays, parallel chunked sequences use small chunks, usually sized
to contain between 512 and 1024 items. Internally, the chunks are stored at the
leaves of a self-balancing tree. The tree is, for all practical purposes, no more
than eight levels deep. The space usage of the sequence is, in practice, never
more than 20% greater than the space of a corresponding array.

The parallel chunked sequence class is a wrapper class whose sole member
object is a sequential chunked sequence. The wrapper function ensures that,
when accessed in bulk fashion, the sequential chunked sequence is processed in
parallel. The parallel chunked sequence class defines wrapper methods for many
of the methods of the sequential chunked sequence class. However, additional
methods can be accessed by directly calling methods of the sequential chunked
sequence object. The complete interface of the sequential chunked sequence class
is documented here.

Template parameters
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Table 9: Template parameters for the pchunkedseq class.

Template parameter Description
Item Type of the objects to be stored in

the container
Alloc Allocator to be used by the container

to construct and destruct objects of
type Item

Item type

class Item;

Type of the elements. Only if Item is guaranteed to not throw while moving,
implementations can optimize to move elements instead of copying them during
reallocations. Aliased as member type parray::value_type.

Allocator

class Alloc;

Type of the allocator object used to define the storage allocation model.
By default, the allocator class template is used, which defines the simplest
memory allocation model and is value-independent. Aliased as member type
parray::allocator_type.

Member types

Table 10: Parallel chunked sequence member types.

Type Description
value_type Alias for template parameter Item
reference Alias for value_type&
const_reference Alias for const value_type&
pointer Alias for value_type*
const_pointer Alias for const value_type*
iterator Iterator
const_iterator Const iterator
seq_type Alias for

data::chunkedseq::bootstrapped::deque<Item>

segment_type Alias for typename
seq_type::segment_type
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Type Description
const_segment_type Alias for typename

seq_type::const_segment_type

Iterator

The type iterator and const_iterator are instances of the random-access
iterator concept.

Additionally, the iterator supports segment-wise access, which allows the client
of the iterator to query an iterator value to discover the contiguous region of
memory in the same chunk that stores nearby items. The documentation on
chunked sequences describes this interface in detail.

Sequential chunked sequence type

The class which implements this type is described in detail here.

Segment type

The segment type, when instantiated by the paralle chunked sequence class,
looks like the following class.

class segment {
public:

pointer begin;
pointer middle;
pointer end;

segment()
: begin(nullptr), middle(nullptr), end(nullptr) { }

segment(pointer begin, pointer middle, pointer end)
: begin(begin), middle(middle), end(end) { }

};

The value begin points to the first item in the segment, the value middle to the
item of interest in the segment, and end to the address one past the end of the
sequence.

Segments are described in detail here.
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Const segment type

The const segment type looks the same as the segment class above, except that
pointer types are replaced by const_pointer types.

Member objects

Table 11: Parallel chunked sequence member objects.

Member objects Description
seq Sequential chunked sequence

Sequential chunked sequence

seq_type seq;

This object provides the storage for all the elements in the container.

Constructors and destructors

Table 12: Parallel chunked sequence constructors and destructors.

Constructor Description
empty container constructor (default
constructor)

constructs an empty container with
no items

fill constructor constructs a container with a
specified number of copies of a given
item

populate constructor constructs a container with a
specified number of values that are
computed by a specified function

copy constructor constructs a container with a copy of
each of the items in the given
container, in the same order

initializer list constructs a container with the items
specified in a given initializer list

move constructor constructs a container that acquires
the items of a given parallel array

destructor destructs a container
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Empty container constructor

pchunkedseq();

Complexity. Constant time.

Constructs an empty container with no items;

Fill container

pchunkedseq(long n, const value_type& val);

Constructs a container with n copies of val.

Complexity. Work and span are linear and logarithmic in the size of the
resulting container, respectively.

Populate constructor

// (1) Constant-time body
pchunkedseq(long n, std::function<Item(long)> body);
// (2) Non-constant-time body
pchunkedseq(long n,

std::function<long(long)> body_comp,
std::function<Item(long)> body);

// (3) Non-constant-time body along with range-based complexity function
pchunkedseq(long n,

std::function<long(long,long)> body_comp_rng,
std::function<Item(long)> body);

Constructs a container with n cells, populating those cells with values returned
by the n calls, body(0), body(1), . . . , body(n-1), in that order.

In the second version, the value returned by body_comp(i) is used by the
constructor as the complexity estimate for the call body(i).

In the third version, the value returned by body_comp(lo, hi) is used by the
constructor as the complexity estimate for the calls body(lo), body(lo+1), . . .
body(hi-1).

Complexity. The work and span cost are (
∑

0≤i<n w(i)) and (log n +
max0≤i<n s(i)), respectively, where w(i) represents the work cost of computing
body(i) and s(i) the corresponding span cost.

Copy constructor

pchunkedseq(const pchunkedseq& other);
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Constructs a container with a copy of each of the items in other, in the same
order.

Complexity. Work and span are linear and logarithmic in the size of the
resulting container, respectively.

Initializer-list constructor

pchunkedseq(initializer_list<value_type> il);

Constructs a container with the items in il.

Complexity. Work and span are linear in the size of the resulting container.

Move constructor

pchunkedseq(pchunkedseq&& x);

Constructs a container that acquires the items of other.

Complexity. Constant time.

Destructor

~pchunkedseq();

Destructs the container.

Complexity. Work and span are linear and logarithmic in the size of the
container, respectively.

Member functions

Table 13: Operations of the parallel chunked sequence.

Operation Description
operator[] Access member item
size Return size
swap Exchange contents
begin cbegin Returns an iterator to the beginning
end cend Returns an iterator the end
clear Erases contents of the container
tabulate Repopulate container changing size
resize Change size
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Indexing operator

reference operator[](long i);
const_reference operator[](long i) const;

Returns a reference at the specified location i. No bounds check is performed.

Complexity. Logarithmic time. The complexity is, however, for practical
purposes, constant time, because thanks to the high branching factor the height
of the tree is, in practice, never more than eight.

Size operator

long size() const;

Returns the size of the container.

Complexity. Constant time.

Exchange operation

void swap(pchunkedseq& other);

Exchanges the contents of the container with those of other. Does not invoke
any move, copy, or swap operations on individual items.

Complexity. Constant time.

Iterator begin

iterator begin() const;
const_iterator cbegin() const;

Returns an iterator to the first item of the container.

If the container is empty, the returned iterator will be equal to end().

Complexity. Constant time.

Iterator end

iterator end() const;
const_iterator cend() const;

Returns an iterator to the element following the last item of the container.

This element acts as a placeholder; attempting to access it results in undefined
behavior.
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Complexity. Constant time.

Clear

void clear();

Erases the contents of the container, which becomes an empty container.

Complexity. Work and span are linear and logarithmic in the size of the
container, respectively.

Iterator validity. Invalidates all iterators, if the size before the operation
differs from the size after.

Tabulate

void tabulate(long n, std::function<value_type(long)> body);
void tabulate(long n,

std::function<long(long)> body_comp_rng,
std::function<value_type(long)> body);

Resizes the container so that it contains n items.

The contents of the current container are removed and replaced by the n items
returned by the n calls, body(0), body(1), . . . , body(n-1), in that order.

Complexity. The work and span cost are (
∑

0≤i<n w(i)) and (log n +
max0≤i<n s(i)), respectively, where w(i) represents the work cost of computing
body(i) and s(i) the corresponding span cost.

Iterator validity. Invalidates all iterators, if the size before the operation
differs from the size after.

Resize

void resize(long n, const value_type& val); // (1)
void resize(long n) { // (2)

value_type val;
resize(n, val);

}

Resizes the container to contain n items.

If the current size is greater than n, the container is reduced to its first n elements.

If the current size is less than n,

1. additional copies of val are appended
2. additional default-inserted elements are appended
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Complexity. Let m be the size of the container just before and n just after
the resize operation. Then, the work and span are linear and logarithmic in
max(m, n), respectively.

Iterator validity. Invalidates all iterators, if the size before the operation
differs from the size after.

Non-member functions

Table 14: Functions relating to the parallel chunked sequence.

Function Description
for_each Applies a given function to each item

in the container
for_each_segment Applies a given function to each

segment in the container

For each

namespace pasl {
namespace pctl {
namespace segmented {

template <class Body>
void for_each(Body body);

} } }

Performs the calls body(x1), . . . , body(xn) for each item xi in the container.

The class Body should provide a call operator of the following type. The reference
xi points to the ith item in the container.

void operator()(Item& xi);

Complexity. The work and span cost are (
∑

0≤i<n w(i)) and (log n +
max0≤i<n s(i)), respectively, where w(i) represents the work cost of computing
body(i) and s(i) the corresponding span cost.

For each segment

namespace pasl {
namespace pctl {
namespace segmented {
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template <class Body_seg>
void for_each_segment(Body_seg body_seg);

} } }

Performs the calls body_seg(lo1, hi1), . . . , body(lon, hin) for each segment
of items (loi, hii) in the container.

The class Body_seg should provide a call operator of the following type. The
lo value points to the first item in the segment and hi one past the end of the
segment.

void operator()(pointer lo, pointer hi);

Complexity. The work and span cost are (
∑

0≤i<n w(i)) and (log n +
max0≤i<n s(i)), respectively, where w(i) represents the work cost of computing
body_seg(i, i + 1) and s(i) the corresponding span cost.

Parallel set

namespace pasl {
namespace pctl {

template <
class Item,
class Compare = std::less<Item>,
class Alloc = std::allocator<Item>,
int chunk_capacity = 8

>
class pset;

} }

The set container stores unique elements in ascending order. Order among the
container elements is maintained by a comparison operator, which is provided by
the template parameter Compare. The value of the elements in the set container
cannot be modified once in the container, but they can be inserted or removed
from the container.

Just like the STL set container, our pset container provides insert and erase
methods. Both methods take logarithmic time in the size of the container.

pset<int> s;
s.insert(5);
s.insert(432);
s.insert(5);
s.insert(89);
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s.erase(5);
std::cout << "s = " << s << std::endl;

This program prints the following.

s = { 89, 432 }

Unlike an STL set, our pset provides bulk set operations, including union
(i.e., merge), intersection, and difference. Moreover, these methods are highly
parallel: they take linear work and logarithmic span in the total size of the two
containers being combined. The merge method computes the set union with
a given container, leaving the result in the targeted container and leaving the
given container empty.

pset<int> s1 = { 3, 1, 5, 8, 12 };
pset<int> s2 = { 3, 54, 8, 9 };
s1.merge(s2);
std::cout << "s1 = " << s1 << std::endl;
std::cout << "s2 = " << s2 << std::endl;

The output:

s1 = { 1, 3, 5, 8, 9, 12, 54 }
s2 = { }

Set intersection is handled in a similar fashion, by the intersection method.

pset<int> s1 = { 3, 1, 5, 8, 12 };
pset<int> s2 = { 3, 54, 8, 9 };
s1.intersect(s2);
std::cout << "s1 = " << s1 << std::endl;
std::cout << "s2 = " << s2 << std::endl;

The output:

s1 = { 3, 8 }
s2 = { }

Set difference is handled similarly by the diff method.

pset<int> s1 = { 3, 1, 5, 8, 12 };
pset<int> s2 = { 3, 54, 8, 9 };
s1.diff(s2);
std::cout << "s1 = " << s1 << std::endl;
std::cout << "s2 = " << s2 << std::endl;

The output:

s1 = { 1, 5, 12 }
s2 = { }
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Template parameters

Table 15: Template parameters for the pset class.

Template parameter Description
Item Type of the objects to be stored in

the container
Compare Type of the comparison function
Alloc Allocator to be used by the container

to construct and destruct objects of
type Item

chunk_capacity Capacity of the contiguous chunks of
memory that are used by the
container to store items

Item type

class Item;

Type of the elements. Only if Item is guaranteed to not throw while moving,
implementations can optimize to move elements instead of copying them during
reallocations. Aliased as member type pset::value_type.

Compare function

class Compare;

bool operator()(const Item& lhs, const Item& rhs);

Allocator

class Alloc;

Type of the allocator object used to define the storage allocation model.
By default, the allocator class template is used, which defines the simplest
memory allocation model and is value-independent. Aliased as member type
pset::allocator_type.

Chunk capacity

int chunk_capacity;
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An integer which determines the maximum size of a contiguous chunk of memory
in the underlying container. The chunks are used by the container to store the
items. The minimum size of a chunk is guaranteed by the container to be at
least chunk_size/2.

Member types

Table 16: Parallel-set member types.

Type Description
value_type Alias for template parameter Item
key_type Alias for template parameter Item
key_compare Alias for template parameter

Compare
reference Alias for value_type&
const_reference Alias for const value_type&
pointer Alias for value_type*
const_pointer Alias for const value_type*
iterator Iterator
const_iterator Const iterator

Iterator

The type iterator and const_iterator are instances of the random-access
iterator concept.

Constructors and destructors

Table 17: Parallel set constructors and destructors.

Constructor Description
empty container constructor (default
constructor)

constructs an empty container with
no items

fill constructor constructs a container with a
specified number of copies of a given
item

populate constructor constructs a container with a
specified number of values that are
computed by a specified function

copy constructor constructs a container with a copy of
each of the items in the given
container, in the same order
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Constructor Description
initializer list constructs a container with the items

specified in a given initializer list
move constructor constructs a container that acquires

the items of a given parallel array
destructor destructs a container

Empty container constructor

pset();

Complexity. Constant time.

Constructs an empty container with no items;

Fill container

pset(long n, const value_type& val);

Constructs a container with n copies of val.

Complexity. Work and span are linear and logarithmic in the size of the
resulting container, respectively.

Populate constructor

// (1) Constant-time body
pset(long n, std::function<Item(long)> body);
// (2) Non-constant-time body
pset(long n,

std::function<long(long)> body_comp,
std::function<Item(long)> body);

// (3) Non-constant-time body along with range-based complexity function
pset(long n,

std::function<long(long,long)> body_comp_rng,
std::function<Item(long)> body);

Constructs a container with n cells, populating those cells with values returned
by the n calls, body(0), body(1), . . . , body(n-1), in that order.

In the second version, the value returned by body_comp(i) is used by the
constructor as the complexity estimate for the call body(i).

In the third version, the value returned by body_comp(lo, hi) is used by the
constructor as the complexity estimate for the calls body(lo), body(lo+1), . . .
body(hi-1).
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Complexity. The work and span cost are (
∑

0≤i<n w(i)) and (log n +
max0≤i<n s(i)), respectively, where w(i) represents the work cost of computing
body(i) and s(i) the corresponding span cost.

Copy constructor

pset(const pset& other);

Constructs a container with a copy of each of the items in other, in the same
order.

Complexity. Work and span are linear and logarithmic in the size of the
resulting container, respectively.

Initializer-list constructor

pset(initializer_list<value_type> il);

Constructs a container with the items in il.

Complexity. Work and span are linear in the size of the resulting container.

Move constructor

pset(pset&& x);

Constructs a container that acquires the items of other.

Complexity. Constant time.

Destructor

~pset();

Destructs the container.

Complexity. Work and span are linear and logarithmic in the size of the
container, respectively.

Member functions

Table 18: Operations of the parallel set.

Operation Description
size Return size
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Operation Description
swap Exchange contents
begin cbegin Returns an iterator to the beginning
end cend Returns an iterator the end
clear Erases contents of the container
find Get iterator to element
insert Insert element
erase Remove element
merge Take set union with given pset
intersect Take set intersection with given pset
diff Take set difference with give pset

Size operator

long size();

Returns the size of the container.

Complexity. Constant time.

Exchange oparation

void swap(pset& other);

Exchanges the contents of the container with those of other. Does not invoke
any move, copy, or swap operations on individual items.

Complexity. Constant time.

Iterator begin

iterator begin() const;
const_iterator cbegin() const;

Returns an iterator to the first item of the container.

If the container is empty, the returned iterator will be equal to end().

Complexity. Constant time.

Iterator end

iterator end() const;
const_iterator cend() const;
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Returns an iterator to the element following the last item of the container.

This element acts as a placeholder; attempting to access it results in undefined
behavior.

Complexity. Constant time.

Clear

void clear();

Erases the contents of the container, which becomes an empty container.

Complexity. Work and span are linear and logarithmic in the size of the
container, respectively.

Iterator validity. Invalidates all iterators, if the size before the operation
differs from the size after.

Find

itereator find(const value_type& val);

Searches the container for an element equivalent to val and returns an iterator
to it if found, otherwise it returns an iterator to pset::end.

Two elements of a set are considered equivalent if the container’s comparison
object returns false reflexively (i.e., no matter the order in which the elements
are passed as arguments).

Complexity. Logarithmic time.

Insert

pair<iterator,bool> insert (const value_type& val);

Extends the container by inserting new elements, effectively increasing the
container size by the number of elements inserted.

Because elements in a set are unique, the insertion operation checks whether
each inserted element is equivalent to an element already in the container, and
if so, the element is not inserted, returning an iterator to this existing element
(if the function returns a value).

Complexity. Logarithmic time.

Iterator validity. Invalidates all iterators, if the size before the operation
differs from the size after.
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Erase

size_type erase (const value_type& val);

Removes from the set the value val, if it is present.

This effectively reduces the container size by the number of elements removed,
which are destroyed.

Complexity. Logarithmic time.

Iterator validity. Invalidates all iterators, if the size before the operation
differs from the size after.

Set union

void merge(pset& other);

Leaves in the current container the result of taking the set union of the original
container and the other container and leaves the other container empty.

Complexity. Work and span are linear and logarithmic in the combined sizes
of the two containers, respectively.

Iterator validity. Invalidates all iterators.

Set intersection

void intersect(pset& other);

Leaves in the current container the result of taking the set intersection of the
original container and the other container and leaves the other container empty.

Complexity. Work and span are linear and logarithmic in the combined sizes
of the two containers, respectively.

Iterator validity. Invalidates all iterators.

Set difference

void diff(pset& other);

Leaves in the current container the result of taking the difference intersection
between the original container and the other container and leaves the other
container empty.

Complexity. Work and span are linear and logarithmic in the combined sizes
of the two containers, respectively.

Iterator validity. Invalidates all iterators.
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Parallel map

Parallel string

namespace pasl {
namespace pctl {

template <class Alloc = std::allocator<Item>>
class pstring;

} }

Member types

Table 19: Parallel string member types.

Type Description
value_type Alias for type char
reference Alias for value_type&
const_reference Alias for const value_type&
pointer Alias for value_type*
const_pointer Alias for const value_type*
iterator Iterator
const_iterator Const iterator

Iterator

The type iterator and const_iterator are instances of the random-access
iterator concept.

Constructors and destructors

Table 20: Parallel-string constructors and destructors.

Constructor Description
empty container constructor (default
constructor)

constructs an empty container with
no items

fill constructor constructs a container with a
specified number of copies of a given
item

32

http://en.cppreference.com/w/cpp/concept/RandomAccessIterator
http://en.cppreference.com/w/cpp/concept/RandomAccessIterator


Constructor Description
populate constructor constructs a container with a

specified number of values that are
computed by a specified function

copy constructor constructs a container with a copy of
each of the items in the given
container, in the same order

initializer list constructs a container with the items
specified in a given initializer list

move constructor constructs a container that acquires
the items of a given parallelstring

destructor destructs a container

Empty container constructor

pstring();

Complexity. Constant time.

Constructs an empty container with no items;

Fill container

pstring(long n, char val);

Constructs a container with n copies of val.

Complexity. Work and span are linear and logarithmic in the size of the
resulting container, respectively.

Populate constructor

// (1) Constant-time body
pstring(long n, std::function<char(long)> body);
// (2) Non-constant-time body
pstring(long n,

std::function<long(long)> body_comp,
std::function<char(long)> body);

// (3) Non-constant-time body along with range-based complexity function
pstring(long n,

std::function<long(long,long)> body_comp_rng,
std::function<char(long)> body);

Constructs a container with n cells, populating those cells with values returned
by the n calls, body(0), body(1), . . . , body(n-1), in that order.
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In the second version, the value returned by body_comp(i) is used by the
constructor as the complexity estimate for the call body(i).

In the third version, the value returned by body_comp(lo, hi) is used by the
constructor as the complexity estimate for the calls body(lo), body(lo+1), . . .
body(hi-1).

Complexity. The work and span cost are (
∑

0≤i<n w(i)) and (log n +
max0≤i<n s(i)), respectively, where w(i) represents the work cost of computing
body(i) and s(i) the corresponding span cost.

Copy constructor

pstring(const pstring& other);

Constructs a container with a copy of each of the items in other, in the same
order.

Complexity. Work and span are linear and logarithmic in the size of the
resulting container, respectively.

Initializer-list constructor

pstring(initializer_list<value_type> il);

Constructs a container with the items in il.

Complexity. Work and span are linear in the size of the resulting container.

Move constructor

pstring(pstring&& x);

Constructs a container that acquires the items of other.

Complexity. Constant time.

Destructor

~pstring();

Destructs the container.

Complexity. Work and span are linear and logarithmic in the size of the
container, respectively.

34



Operations

Table 21: Parallel-array member functions.

Operation Description
operator[] Access member item
size Return size
clear Erase contents
resize Change size
swap Exchange contents
begin cbegin Returns an iterator to the beginning
end cend Returns an iterator to the end
operator+= Append to string
operator+ Concatenates strings
c_str Get C string equivalent

Indexing operator

reference operator[](long i);
const_reference operator[](long i) const;

Returns a reference at the specified location i. No bounds check is performed.

Complexity. Constant time.

Size operator

long size() const;

Returns the size of the container.

Complexity. Constant time.

Clear

void clear();

Erases the contents of the container, which becomes an empty container.

Complexity. Linear and logarithmic work and span, respectively.

Resize

void resize(long n, char val); // (1)
void resize(long n) { // (2)
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char val;
resize(n, val);

}

Resizes the container to contain n items.

If the current size is greater than n, the container is reduced to its first n elements.

If the current size is less than n,

1. additional copies of val are appended
2. additional default-inserted elements are appended

Complexity. Let m be the size of the container just before and n just after
the resize operation. Then, the work and span are linear and logarithmic in
max(m, n), respectively.

Exchange operation

void swap(pstring& other);

Exchanges the contents of the container with those of other. Does not invoke
any move, copy, or swap operations on individual items.

Complexity. Constant time.

Iterator begin

iterator begin() const;
const_iterator cbegin() const;

Returns an iterator to the first item of the container.

If the container is empty, the returned iterator will be equal to end().

Complexity. Constant time.

Iterator end

iterator end() const;
const_iterator cend() const;

Returns an iterator to the element following the last item of the container.

This element acts as a placeholder; attempting to access it results in undefined
behavior.

Complexity. Constant time.

36



Append to string

pstring& operator+=(const pstring& str);

Extends the string by appending additional characters at the end of its current
value.

Complexity. Linear and logarithmic in the size of the resulting string, respec-
tively.

Iterator validity. Invalidates all iterators, if the size before the operation
differs from the size after.

Concatenate strings

pstring operator+(const pstring& rhs);

Returns a newly constructed string object with its value being the concatenation
of the characters in this followed by those of rhs.

Complexity. Linear and logarithmic in the size of the resulting string, respec-
tively.

Get C string equivalent

const char* c_str();

Returns a pointer to an array that contains a null-terminated sequence of
characters (i.e., a C-string) representing the current value of the string object.

This array includes the same sequence of characters that make up the value of
the string object plus an additional terminating null-character ('\0') at the end.

Complexity. Constant time.

Data-parallel operations

This section introduces a collection of data-parallel operations that are useful
for processing over pctl containers.

Parallel-for loop

namespace pasl {
namespace pctl {

template <class Iter, class Body>
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void parallel_for(Iter lo, Iter hi, Body body);

} }

The first of data-parallel operations we are going to consider is a looping construct
that is useful for making changes to memory. For now, we are going to assume
that each iterate of our loops take constant time. In the next section, we show
how we can handle in an effective manner loop bodies that are not constant
time.

Let us begin by considering example code. The following program uses a parallel-
for loop to assign each position i in xs to the value i+1.

parray<long> xs = { 0, 0, 0, 0 };
parallel_for((long)0, xs.size(), [&] (long i) {

xs[i] = i+1;
});

std::cout << "xs = " << xs << std::endl;

It’s output is the following.

xs = { 1, 2, 3, 4 }

We can just as easily configure our parallel-for loop to iterate with respect to a
specified range of iterator values. In this case, we are instead just incrementing
the value in each cell of our parallel array.

parray<long> xs = { 0, 1, 2, 3 };
parallel_for(xs.begin(), xs.end(), [&] (long* p) {

long& xs_i = *p;
xs_i = xs_i + 1;

});

std::cout << "xs = " << xs << std::endl;

The output of this program is the same as that of the one just above.

By exchanging the type parray for pchunkedseq and the iterator type long*
for typename pchunkedseq<long>::iterator, we can iterate over a parallel
chunked sequence in a similar manner.

pchunkedseq<long> xs = { 0, 1, 2, 3 };
parallel_for(xs.begin(), xs.end(), [&] (typename pchunkedseq<long>::iterator p) {

long& xs_i = *p;
xs_i = xs_i + 1;

});

std::cout << "xs = " << xs << std::endl;
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The output of this program is the same as that of the one just above. All of the
examples presented here can be found in the source file parallelfor.cpp.

Non-constant-time loop bodies

namespace pasl {
namespace pctl {

template <class Iter, class Body, class Comp>
void parallel_for(Iter lo, Iter hi, Comp comp, Body body);

} }

When the loop body does not take constant time, that is, the loop body takes
time in proportion to a known quantity, our code needs to provide a runction of
that quantity to the looping construct in order for the loop to find an efficient
schedule for the loop iterations. To see how this reporting is done, let us consider
a program that computes the product of a dense matrix by a dense vector.
Our matrix is n × n and is laid out in memory in row major format. In the
following example, we call dmdmult1 to compute the vector resulting from the
multiplication of matrix mtx and vector vec.

parray<double> mtx = { 1.1, 2.1, 0.3, 5.8,
8.1, 9.3, 3.1, 3.2,
5.3, 3.5, 7.9, 2.3,
4.5, 5.5, 3.4, 4.5 };

parray<double> vec = { 4.3, 0.3, 2.1, 3.3 };

parray<double> result = dmdvmult1(mtx, vec);
std::cout << "result = " << result << std::endl;

The output of the program is the following.

result = { 25.13, 54.69, 48.02, 42.99 }

In the body of dmdvmult1, we need to compute the dot product of a given row
by our vector vec. Let us just assume that we have such a function already. In
particular, the ddotprod function takes the dimension value, a pointer to the
start of a row in the matrix, a pointer to the vector. The function returns the
corresponding dot product, taking time O(n).

double ddotprod(long n, const double* row, const double* vec);

Now, we see that the body of our dmdvmult1 function uses a parallel-for loop to
fill each cell in the result vector. The complexity function comp describes the
approximate cost of performing one loop iterate, which is the same as performing
one dot product operation on a specified row.
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parray<double> dmdvmult1(const parray<double>& mtx, const parray<double>& vec) {
long n = vec.size();
parray<double> result(n);
auto comp = [&] (long i) {

return n;
};
parallel_for(0L, n, comp, [&] (long i) {

result[i] = ddotprod(n, mtx.cbegin()+(i*n), vec.begin());
});
return result;

}

The above code is perfectly fine for most purposes, because the granularity-
control algorithm of pctl should be able to use the complexity function to
schedule loop iterations efficiently. However, this particular type of parallel-for
loop imposes scheduling-related overhead that is important to be aware of. In
particular, inside the implementation of this particular parallel-for loop, there
is an operation that is being called to precompute the cost of computing any
subrange of the parallel-for loop iterations.

The weights operation

This operation is a function which takes a number n and a weight function w
and returns a weight table.

template <class Weight>
parray<long> weights(long n, Weight weight);

The result returned by the call weights(n, w) is the sequence [0, w(0),
w(0)+w(1), w(0)+w(1)+w(2), ..., w(0)+...+w(n-1)]. Notice that the size
of the value returned by the weights function is always n+1. The work and span
cost of this operation are linear and logarithmic in n, respectively.

Let us consider how the range-based parallel-for loop in dmdvmult2 would call
the weights function. Suppose that n = 4. Now, internally, the parallel-for loop
is going to compute a weight table that looks the same as w in the code below.

parray<long> w = weights(4, comp);

std::cout << "w = " << w << std::endl;

The output is going to be as shown below.

w = { 0, 4, 8, 12, 16 }

For one more example, let us consider an application of the weights function
where the given weight function is one that returns the value of its current
position.
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parray<long> w = weights(4, [&] (long i) {
return i;

});

std::cout << "w = " << w << std::endl;

The output is the following.

w = { 0, 0, 1, 3, 6 }

Returning to our dmdvmult2 example, we can now see that the work and span
cost of calculating the weights table are linear and logarithmic in n, respectively.
Since the total cost of the multiplication is O(n2), the cost of calculating the
weights table is relatively negligible and can therefore be disregarded in this case.
Nevertheless, in other cases, we may want to avoid the cost of calculating the
weights table. To do so, we need to consider the range-based parallel-for loop.

Range-based complexity functions for non-constant-time loop bodies

namespace pasl {
namespace pctl {
namespace range {

template <
class Iter,
class Body,
class Comp_rng

>
void parallel_for(Iter lo,

Iter hi, Comp_rng comp_rng,
Body body);

} } }

The idea here is that, instead of reporting the cost of computing an individual
iterate, we report the cost of a given range. The function comp_rng is going to
calculate and return exactly this value. The code below shows one way that we
can make this modification to our dmdvmult2 function.

parray<double> dmdvmult2(const parray<double>& mtx, const parray<double>& vec) {
long n = vec.size();
parray<double> result(n);
auto comp_rng = [&] (long lo, long hi) {

return (hi - lo) * n;
};
range::parallel_for(0L, n, comp_rng, [&] (long i) {

result[i] = ddotprod(n, mtx.cbegin()+(i*n), vec.begin());
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});
return result;

}

The idea is that instead of reporting the cost of computing the dot product on
an individual row, we instead report the cost of performing a sequence of dot
products on a specified range. In particular, the comp_rng function calculates the
cost of performing hi-lo dot products. In this way, we have bypassed having to
calculate the weights table by providing such a range-based complexity function.

Sequential-alternative loop bodies

namespace pasl {
namespace pctl {
namespace range {

template <
class Iter,
class Body,
class Comp_rng,
class Seq_body_rng

>
void parallel_for(Iter lo,

Iter hi,
Comp_rng comp_rng,
Body body,
Seq_body_rng seq_body_rng);

} } }

Let us suppose that we have some highly optimized sequential algorithm that we
wish to use along with our parallel-for loop. How can we inject such code into a
parallel-for computation? For this purpose, we have another form of parallel-for
loop that takes a sequential-body function as its last argument.

Now, we can see from the following example code how we can use the new
parallel-for loop. Just after the parallel body, we see a sequential body, which
consists of two ordinary, sequential for loops. When the scheduler determines
that a loop range is too small to benefit from parallelism, the body that is
applied is the sequential body.

parray<double> dmdvmult3(const parray<double>& mtx, const parray<double>& vec) {
long n = vec.size();
parray<double> result(n);
auto comp_rng = [&] (long lo, long hi) {

return (hi - lo) * n;
};
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range::parallel_for(0L, n, comp_rng, [&] (long i) {
result[i] = ddotprod(n, mtx.cbegin()+(i*n), vec.begin());

}, [&] (long lo, long hi) {
for (long i = lo; i < hi; i++) {

double dotp = 0.0;
for (long j = 0; j < n; j++) {

dotp += mtx[i*n+j] * vec[j];
}
result[i] = dotp;

}
});
return result;

}

At first glance, our optimization of injecting a sequential body might seem
artificial, given that, for a large enough matrix, the sequential body may never
get applied. The reason is that the work involved in processing just a single,
large row may be plenty to warrant parallel execution. However, if we consider
rectangular matrices, or sparce matrices, it should be clear that the sequential
body can improve performance in certain cases.

To summarize, we started with a basic parallel-for loop, showing that the basic
version is flexible enough to handle various indexing formats (e.g., integers,
iterators of various kinds). We then saw that, when the body of the loop is not
constant time, we need to define a complexity function and pass the complexity
function to the parallel-for function. We then saw that we can potentially reduce
the scheduling overhead by instead using a range-based version of parallel for,
where we pass a range-based complexity function. Then, we saw that we can
potentially optimize further by providing a sequential alternative body to the
parallel for. Finally, all of the code examples presented in this section can be
found in the file dmdvmult.cpp.

Template parameters

The following table describes the template parameters that are used by the
different version of our parallel-for function.

Table 22: All template parameters used by various instance of the
parallel-for loop.

Template parameter Description
Iter Type of the iterator to be used by

the loop
Body Loop body
Seq_body_rng Sequentialized version of the body
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Template parameter Description
Comp Complexity function for a specified

iteration
Comp_rng Complexity function for a specified

range of iterations

Loop iterator

class Iter;

At a minimum, any value of type Iter must support the following operations.
Let a and b denote values of type Iter and n a value of type long. Then,
we need the subtraction operation a-b, the comparison operation a!=b, the
addition-by-a-number-operation a+n, and the increment operation a++.

As such, the concept of the Iter class bears resemblance to the concept of the
random-access iterator. The main difference between the two is that, with the
random-access iterator, an iterable value necessarily has the ability to dereference,
whereas with our Iter class this feature is not used by the parallel-for loop and
therefore not required.

Loop body

class Body;

The loop body class must provide a call operator of the following type. The
iterator parameter is to receive the value of the current iterate.

void operator()(Iter it);

Sequentialized loop body

class Seq_body_rng;

The sequential loop body class must provide a call operator of the following
type.

void operator()(Iter lo, Iter hi);

This method is called by the scheduler when a given range of loop iterates is
determined to be too small to benefit from parallel execution. This range to be
executed sequentially is the right-open range [lo, hi).

Complexity function

class Comp;

The complexity-function class must provide a call operator of the following type.
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long operator()(Iter it);

This method is called by the scheduler to determine the cost of executing a
given iterate, specified by it. The return value should be a positive number that
represents an approximate (i.e., asymptotic) cost required to execute the loop
body at the iterate it.

Range-based compelxity function

class Comp_rng;

The range-based complexity-function class must provide a call operator of the
following type.

long operator()(Iter lo, Iter hi);

This method is called by the scheduler to determine the cost of a range of
loop iterates. The range is specified by the right-open range [lo, hi). Like the
above function, the return value should be a positive number that represents an
approximate (i.e., asymptotic) cost required to execute specified range.

Reductions and scans

Parallel-for loops give us the ability to process in parallel over a specified range
of iterates. However, often, we want to, say, take the sum of a given sequence
of numbers, or perhaps, find the lowest point in a given set of points in two-
dimensional space. The problem is that the parallel-for loop is the wrong tool
for this job, because it is not safe to use a parallel-for loop to accumulate a value
in a shared memory cell. We need another mechanism if we want to program
such accumulation patterns. In general, when we have a collection of values that
we want to combine in a certain fashion, we can often obtain an efficient and
clean solution by using a reduction, which is an operation that combines the
items in a specified range in a certain fashion.

The mechanism that a reduction uses to combine a given collection of items is
a mathematical object called a monoid. The reason that monoids are useful
is because, if the problem can be stated in terms of a monoid, then a monoid
provides a simple, yet sufficient condition to find a corresponding reduction that
delivers an efficient parallel solution. In other words, a monoid is a bit like a
design pattern for programming parallel algorithms. Recall that a monoid is an
algebraic structure that consists of a set T , an associative binary operation ⊕
and an identity element I. That is, (T,⊕, I) is a monoid if:

• ⊕ is associative: for every x, y and z in T , x⊕ (y ⊕ z) = (x⊕ y)⊕ z.
• I is the identity for ⊕: for every x in T , x⊕ I = I⊕ x.

Examples of monoids include the following:

• T = the set of all integers; ⊕ = addition; I = 0
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• T = the set of 32-bit unsigned integers; ⊕ = addition modulo 232; I = 0
• T = the set of all strings; ⊕ = concatenation; I = the empty string
• T = the set of 32-bit signed integers; ⊕ = std::max; I = −232 + 1

Let us now see how we can encode a reduction in C++.

Basic reduction

namespace pasl {
namespace pctl {

template <class Iter, class Item, class Combine>
Item reduce(Iter lo, Iter hi, Item id, Combine combine);

} }

The most basic reduction pattern that is provided by pctl is the one above. This
template function applies a monoid, encoded by the identity element id and
the associative combining operator combine, to return the value computed by
combining together the items contained by the given right-open range [lo, hi).
For example, suppose that we are given as input an array of numbers and our
task is to find the largest number using linear work and logarithmic span. We
can solve this problem by using our basic reduction, as shown below.

int max(const parray<int>& xs) {
int id = std::numeric_limits<int>::lowest();
return reduce(xs.cbegin(), xs.cend(), id, [&] (int x, int y) {

return std::max(x, y);
});

}

Let us pause for a moment to consider what is the value returned by the max
function when it is passed the empty array (i.e., max({ }). In this case, the
value is going to be the smallest

As we are going to see later, the work and span cost of this operation are linear
and logarithmic in the size of the input array, implying a good parallel solution
to this particular problem.

It is worth noting that reduction can be applied to any container type that
provides a random-access iterator. For example, we could obtain a similarly
valid and efficient parallel solution to find the max of the items in a chunked
sequence, for example, by simply replacing the type parray in the code above
by the type pchunkedseq.
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Basic reduction with non-constant-time combining operators

namespace pasl {
namespace pctl {

template <
class Iter,
class Item,
class Weight,
class Combine

>
Item reduce(Iter lo,

Iter hi,
Item id,
Weight weight,
Combine combine);

} }

Recall that, for parallel-for loops, we had to take special measures in order to
properly encode loops with non-constant-time loop bodies. The situation is
similar for reductions: if the associative combining operator is not constant time,
then we need to provide an extra function to report the costs. However, the way
that we are going to report is a little different that the way we reported to the
parallel-for loop.

What we want to report is the weight of each item in the input sequence. The
idea is that the cost of combining any two items in the input sequence using the
given associative combining operator is the sum of the weights of the two items.
Let us consider an example of this pattern. The code below takes as input an
array of arrays of numbers and returns the largest number contained by the
subarrays. Now, observe that the cost of performing our combine operator to any
two subarrays xs1 and xs2 is the value xs1.size() + xs2.size(). It should
be clear that our reduce operation can calculate these intermediate costs from
the weight function, which we pass to our reduction. Just like the weight-based
parallel-for loop, the reduction operation calculates a table containing the prefix
sums of the weights of the items.

int max0(const parray<parray<int>>& xss) {
parray<int> id = { std::numeric_limits<int>::lowest() };
auto weight = [&] (const parray<int>& xs) {

return xs.size();
};
auto combine = [&] (const parray<int>& xs1,

const parray<int>& xs2) {
parray<int> r = { std::max(max(xs1), max(xs2)) };
return r;
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};
parray<int> a =

reduce(xss.cbegin(), xss.cend(), id, weight, combine);
return a[0];

}

When the max0 function returns, the result is just one number that is our
maximum value. It is therefore unfortunate that our combining operator has
to pay the cost to package the current maximum value in the array r. The
abstraction boundaries, in particular, the type of the reduce function here leaves
us no choice, however. Later, we are going to see that, by generalizing our
reduce function a little, we can sidestep this issue.

The example codes shown in this section can be found in max.hpp and max.cpp.

Basic scan

namespace pasl {
namespace pctl {

template <
class Iter,
class Item,
class Combine

>
parray<Item> scan(Iter lo,

Iter hi,
Item id,
Combine combine,
scan_type st);

} }

A scan is an operation that computes the running totals of a given sequence
of values of a specified type. Just like with a reduction, a scan computes its
running totals with respect to a given monoid. So, accordingliy, the signature
of our scan function shown above looks a lot like the signature of our reduce
function.

However, there are a couple differences. First, instead of returning a single result
value, the scan function returns an array (of length hi - lo) of the running
totals of the input sequence. Second, the function takes the argument st to
determine whether the scan is inclusive or exclusive and whether the results are
to be calculated from the front to the back of the input sequence or from back
to front.

namespace pasl {
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namespace pctl {

using scan_type = enum {
forward_inclusive_scan,
forward_exclusive_scan,
backward_inclusive_scan,
backward_exclusive_scan

};

} }

Before we define scan formally, let us first consider some example programs. For
our running example, we are going to pick the same monoid that we used in our
running example for the reduce function: the set of 32-bit signed integers, along
with the std::max combining operator and the identity −232 + 1.

auto combine = [&] (int x, int y) {
return std::max(x, y);

};
int id = std::numeric_limits<int>::lowest(); // == -2^32+1 == -2147483648

We are going to use the following array as the input sequence.

parray<int> xs = { 1, 3, 9, 0, 33, 1, 1 };

The following code prints the result of the forward-exclusive scan of the above
sequence.

parray<int> fe =
scan(xs.cbegin(), xs.cend(), id, combine, forward_exclusive_scan);

std::cout << "fe\t= " << fe << std::endl;

The output is shown below. Notice that the first value is the identity element,
id and that the running totals are computed starting from the beginning to
the end of the input sequence. In general, the first value of the result of any
exclusive scan is the identity element. Moreover, the total of the entire input
sequence is not included in the result array.

fe = { -2147483648, 1, 3, 9, 9, 33, 33 }

In general, the result of a forward-exclusive reduction is the sequence [(I), (I⊕
xs0), (I⊕ xs0 ⊕ xs1), . . . , (I⊕ xs0 ⊕ . . .⊕ xsn−2)], where the input sequence is
xs = [xs0, . . . , xsn−1]. Now, let us consider the forward-inclusive scan.

parray<int> fi =
scan(xs.cbegin(), xs.cend(), id, combine, forward_inclusive_scan);

std::cout << "fi\t= " << fi << std::endl;

In the forward-inclusive scan, the first value in the result array is always the first
value in the input sequence and the last value is the total of the entire input
sequence.
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fi = { 1, 3, 9, 9, 33, 33, 33 }

The below example shows the backward-oriented versions of the scan operator.

parray<int> be =
scan(xs.cbegin(), xs.cend(), id, combine, backward_exclusive_scan);

std::cout << "be\t= " << be << std::endl;

parray<int> bi =
scan(xs.cbegin(), xs.cend(), id, combine, backward_inclusive_scan);

std::cout << "bi\t= " << bi << std::endl;

Output:

be = { 33, 33, 33, 33, 1, 1, -2147483648 }
bi = { 33, 33, 33, 33, 33, 1, 1 }

The uses of the scan function that we have considered thus far use a constant-time
combining operator. For such applications, the work and span complexity of an
application is the same as the work and span complexity of the corresponding
reduce operation. In specific, our applications of scan shown above take linear
work and logarithmic span in the size of the input sequence, and so does our
max function, which uses reduce in a similar way. It turns out that, in general,
given the same inputs (disragarding, of course, the scan-type argument, which
has no effect with respect to asymptotic running time), reduce and scan have
the same work and span complexity.

Basic scan with a non-constant-time combining operator

namespace pasl {
namespace pctl {

template <
class Iter,
class Item,
class Weight,
class Combine

>
parray<Item> scan(Iter lo,

Iter hi,
Item id,
Weight weight,
Combine combine,
scan_type st)

} }
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Just as was the case with reduce, our scan operator has to handle non-constant-
time associative combining operators. To this end, pctl provides the above scan
function, which now takes the corresponding weight function. An application of
this scan function looks just like with the corresponding reduce function.

Template parameters

Table 23: Template parameters for basic reduce and scan operations.

Template parameter Description
Iter Type of the iterator to be used to

access items in the input container
Item Type of the items in the input

container
Combine Associative combining operator
Weight Weight function (optional)

Item iterator

class Iter;

An instance of this class must be an implementation of the random-access
iterator.

An iterator value of this type points to a value from the input stream (i.e., a
value of type Item).

Item

class Item;

Type of the items to be processed by the reduction.

Associative combining operator

class Combine;

The combining operator is a C++ functor that takes two items and returns a
single item. The call operator for the Combine class should have the following
type.

Item operator()(const Item& x, const Item& y);

The behavior of the reduction is well defined only if the combining operator is
associative.
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Associativity. Let f be an object of type Combine. The operator f is associative
if, for any x, y, and z that are values of type Item, the following equality holds:

f(x, f(y, z)) == f(f(x, y), z)

Weight function

class Weight;

The weight function is a C++ functor that takes a single item and returns a
non-negative “weight value” describing the size of the item. The call operator
for the weight function should have the following type.

long operator()(const Item& x);

Complexity

There are two cases to consider for any reduction reduce(lo, hi, id, f) (or, corre-
spondingly, any scan scan(lo, hi, id, f, st) for any scan type st):

1. Constant-time associative combining operator. The amount of work
performed by the reduction is O(hi− lo) and the span is O(log(hi− lo)).

2. Non-constant-time associative combining operator. We define R
to be the set of all function applications f(x, y) that are performed in the
reduction tree. Then,

• The work performed by the reduction is O(n+
∑

f(x,y)∈R(f,id,lo,hi) W (f(x, y))).

• The span of the reduction is O(log n maxf(x,y)∈R(f,id,lo,hi) S(f(x, y))).

Under certain conditions, we can use the following lemma to deduce a more
precise bound on the amount of work performed by the reduction.

Lemma (Work efficiency). For any associative combining operator f and
weight function w, if for any x, y,

• w(f(x, y)) ≤ w(x) + w(y), and
• W ≤ c(w(x) + w(y)), for some constant c,

where W denotes the amount of work performed by the call f(x, y), then the
amount of work performed by the reduction is O(log(hi − lo)

∑
lo≤it<hi(1 +

w(∗it))).

Example: analysis of the complexity of a non-constant time combin-
ing operator. For this example, let us analyze the max0 function, which is
defined in a previous section. We will begin by analyzing the work. To start, we
need to determine whether the combining operator of the reduction over xss
is constant-time or not. This combining operator is not because the combining
operator calls the max function (twice, in fact). The first call is applied to the
array xs and the second to ys. The total work performed by these two calls is
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linear in |xs|+ |ys|. Therefore, by applying the work-lemma shown above, we get
that the total work performed by this reduction is O(log |xss|maxxs∈xss |xs||).
The span is simpler to analyze. By applying our span rule for reduce, we get
that the span for the reduction is O(log |xss|maxxs∈xss log |xs|).

Advanced reductions and scans

Although quite general already, the reduce and scan functions that we have
considered thus far are not always sufficiently general. For example, the basic
forms of reduce and scan require that the type of the result value (or values in
the case of scan) is the same as the type of the values in the input sequence.
As we saw in a previous section, this requirement made the code of the max0
function look rather awkward and perhaps unnecessarily inefficient. Fortunately,
in pctl, such issues can be readily addressed by using more advanced forms of
reduce and scan.

In this section, we are going to examine in detail which problems (or, more
precisely, problem patterns) that can be solved more efficiently and concisely by
using more general forms of reduce and scan. Because the number of possible
variations of reduce and scan is quite large, we are going to use a layered design,
whereby, for each generalization we introduce, we introduce one new abstraction
layer on top of the previous one. The following table summarizes the layers that
we define and what each successive layer adds on top of its predecessor layer.
The lowest level, namely level 0, is the level corresponding to our basic reduce
and scan functions from the beginning of this section.

Table 24: Abstraction layers for reduce and scan that are provided
by pctl.

Abstraction layer Description
Level 0 (basic reduce and scan) Apply a specified monoid to combine

the items of a range in memory that
is specified by a pair of iterator
pointer values

Level 1 Introduces a lift operator that allows
the client to inline into the reduce a
specified map operation

Level 2 Introduces an operator that provides
a sequentialized alternative for the
lift operator

Level 3 Introduces a “mergeable output”
type that enables destination-passing
style reduction
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Abstraction layer Description
Level 4 Introduces a “splittlable input” type

that replaces the iterator pointer
values

Level 1

namespace pasl {
namespace pctl {
namespace level1 {

template <
class Iter,
class Result,
class Combine,
class Lift

>
Result reduce(Iter lo,

Iter hi,
Result id,
Combine combine,
Lift lift);

template <
class Iter,
class Result,
class Combine,
class Lift_comp,
class Lift

>
Result reduce(Iter lo,

Iter hi,
Result id,
Combine combine,
Lift_comp lift_comp,
Lift lift);

template <
class Iter,
class Result,
class Combine,
class Lift

>
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parray<Result> scan(Iter lo,
Iter hi,
Result id,
Combine combine,
Lift lift,
scan_type st);

template <
class Iter,
class Result,
class Combine,
class Lift_comp,
class Lift

>
parray<Result> scan(Iter lo,

Iter hi,
Result id,
Combine combine,
Lift_comp lift_comp,
Lift lift,
scan_type st);

} } }

To motivate level 1, let us return to our running example and, in particular, the
max0 function from a previous section. When we examine max0, we see that our
identity value is an array, our combine operator takes two arrays and returns an
array, and our result value is itself an array. In other words, the monoid that we
use for max0 is one where the input sequence is the set of all arrays of numbers,
and the identity and combining function follow accordingly. As such, to get the
final result value, at the end of the function, we have to extract the first value
from the result array. Why do we need to use these intermediate arrays? The
only reason is that the basic reduce function requires that the type of the input
value (an array of numbers) be the same as the type of the result value (an array
of numbers).

The level-1 reduce function allows us to bypass this limitation, provided that
we define and pass to the level-1 reduce function a lift function of our choice.
To see what it looks like, let us consider how we solve the same problem as
before, but this time using level-1 reduce. In the max1 function below, we see
first that our identity element and associative combining operator are specified
for base values (i.e., ints) rather than arrays of ints. Furthermore, we see that
our lift function is a function that takes (a reference to) an array and returns
the maximum value of the given array, using the same max function that we
defined in a previous section. Now, it should be clear what is the purpose of the
lift function: it describes how to solve the same problem, but specifically for an
individual item in the input.
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int max1(const parray<parray<int>>& xss) {
auto lo = xss.cbegin();
auto hi = xss.cend();
int id = std::numeric_limits<int>::lowest();
auto combine = [&] (int x, int y) {

return std::max(x, y);
};
auto lift_comp = [&] (const parray<int>& xs) {

return xs.size();
};
auto lift = [&] (const parray<int>& xs) {

return max(xs);
};
return level1::reduce(lo, hi, id, combine, lift_comp, lift);

}

As usual, because our lift function is not a constant-time function, we need to
report the cost of the lift function. To this end, in the code above, we use the
lift_comp function which returns the cost of the corresponding application of
the lift function. The cost that we defined is, in particular, equal to the size of
the array, since the max function takes linear time.

In general, our level 1 reduce (and scan) now recognize two types of values:

1. the type Item, which is the type of the items stored in the input sequence
(i.e., the type of values pointed at by an iterator of type Iter)

2. the type Result, which is the type of the result value (or values in the
case of scan) that are returned by the reduce (or scan).

In terms of types, the reduce function converts a value of type Item to a
corresponding value of type Result. In the example above, our lift function
converts from a value of type Item = parray<int> to a value of type int.

Index-passing reduce and scan

namespace pasl {
namespace pctl {
namespace level1 {

template <
class Iter,
class Result,
class Combine,
class Lift_idx

>
Result reducei(Iter lo,

Iter hi,
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Result id,
Combine combine,
Lift_idx lift_idx);

template <
class Iter,
class Result,
class Combine,
class Lift_comp_idx,
class Lift_idx

>
Result reducei(Iter lo,

Iter hi,
Result id,
Combine combine,
Lift_comp_idx lift_comp_idx,
Lift_idx lift_idx);

template <
class Iter,
class Result,
class Combine,
class Lift_idx

>
parray<Result> scani(Iter lo,

Iter hi,
Result id,
Combine combine,
Lift_idx lift_idx,
scan_type st);

template <
class Iter,
class Result,
class Combine,
class Lift_comp_idx,
class Lift_idx

>
parray<Result> scani(Iter lo,

Iter hi,
Result id,
Combine combine,
Lift_comp_idx lift_comp_idx,
Lift_idx lift_idx,
scan_type st);
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} } }

Sometimes, it is useful for reduce and scan to pass to their lift function an
extra argument: the corresponding position of the item in the input sequence.
For this reason, pctl provides for each of the level 1 functions a corresponding
index-passing version. For instance, the reducei function below now takes a
lift_idx function instead of the usual a lift function. This new, index-passing
version of the lift function itself takes an additional position argument: for item
xsi, the lift function is now applied by reducei to each element as before, but
along with the position of the item (i.e., lift_idx(i, xsi)).

Template parameters

Table 25: Template parameters that are introduced in level 1.

Template parameter Description
Result Type of the result value to be

returned by the reduction
Lift Lifting operator
Lift_idx Index-passing lifting operator
Combine Associative combining operator
Lift_comp Complexity function associated with

the lift funciton
Lift_comp_idx Index-passing lift complexity function

Result

class Result

Type of the result value to be returned by the reduction.

This class must provide a default (i.e., zero-arity) constructor.

Lift

class Lift;

The lift operator is a C++ functor that takes an iterator and returns a value
of type Result. The call operator for the Lift class should have the following
type.

Result operator()(const Item& x);

Index-passing lift

class Lift_idx;
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The lift operator is a C++ functor that takes an index and a corresponding
iterator and returns a value of type Result. The call operator for the Lift class
should have the following type.

Result operator()(long pos, const Item& x);

The value passed in the pos parameter is the index corresponding to the position
of item x.

Associative combining operator

class Combine;

Now, the type of our associative combining operator has changed from what it
is in level 0. In particular, the values that are being passed and returned are
values of type Result.

Result operator()(const Result& x, const Result& y);

Complexity function for lift

class Lift_comp;

The lift-complexity function is a C++ functor that takes a reference on an item
and returns a non-negative number of type long. The Lift_comp class should
provide a call operator of the following type.

long operator()(const Item& x);

Index-passing lift-complexity function

class Lift_comp_idx;

The lift-complexity function is a C++ functor that takes an index and an
reference on an item and returns a non-negative number of type long. The
Lift_comp_idx class should provide a call operator of the following type.

long operator()(long pos, const Item& x);

Complexity

Let us now consider the work and span complexity of a level-1 reduction
reduce(lo, hi, id, f, l) (or, correspondingly, any scan scan(lo, hi, id, f, l, st) for
any scan type st). Compared to the previous level, in level 1, we now need
to account for the costs associated with applications of the lift operator. We
define L to be the set of all function applications of l(a) that are performed
in the leaves of the level-1 reduction tree and R to be the set of all function
applications f(x, y) in the interior nodes of the level-1 reduction tree. There are
two cases with respect to the associative combining operator f :

1. Constant-time associative combining operator. There are two cases
with respect to the lifting operator l.
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a. Constant-time lift operator. The amount of work performed by
the reduction is O(hi− lo) and the span is O(log(hi− lo)).

b. Non-constant-time lift operator. The total amount of work per-
formed by the reduction is O((hi− lo) +

∑
l(a)∈L(lo,hi,id,f,l) W (l(a)))

and the span is O(log(hi− lo) + maxl(a)∈L(lo,hi,id,f,l) W (l(a))).

2. Non-constant-time associative combining operator. Then,

• The work performed by the level-1 reduction is O(n+
∑

f(x,y)∈R(lo,hi,id,f,l) W (f(x, y))+∑
l(a)∈L(lo,hi,id,f,l) W (l(a))).

• The span of the reduction is O(log n maxf(x,y)∈R(lo,hi,id,f,l) S(f(x, y))+
maxl(a)∈L(lo,hi,id,f,l) S(l(a))).

Under certain conditions, we can use the following lemma to deduce a more
precise bound on the amount of work performed by the level-1 reduction.

Lemma (Work efficiency). For any associative combining operator f and
weight function w, if for any a

• w(l(a)) ≤ w(a), and
• Wl ≤ c(log w(a) · w(a)), for some constant c.

where Wl denotes the amount of work performed by the call l(a), and for any x,
y,

• w(f(x, y)) ≤ w(x) + w(y), and
• Wf ≤ c(w(x) + w(y)), for some constant c,

where Wf denotes the amount of work performed by the call f(x, y), then the
amount of work performed by the reduction is O(log(hi − lo)

∑
lo≤it<hi(1 +

w(∗it))).

Level 2

namespace pasl {
namespace pctl {
namespace level2 {

template <
class Iter,
class Result,
class Combine,
class Lift_comp_rng,
class Lift_idx,
class Seq_reduce_rng

>
Result reduce(Iter lo,

Iter hi,
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Result id,
Combine combine,
Lift_comp_rng lift_comp_rng,
Lift_idx lift_idx,
Seq_reduce_rng seq_reduce_rng);

template <
class Iter,
class Result,
class Combine,
class Lift_comp_rng,
class Lift_idx,
class Seq_reduce_rng

>
parray<Result> scan(Iter lo,

Iter hi,
Result id,
Combine combine,
Lift_comp_rng lift_comp_rng,
Lift_idx lift_idx,
Seq_reduce_rng seq_reduce_rng,
scan_type st);

} } }

In the section on parallel for loops, we saw that we can combine two algorithms,
one parallel and one sequential, to make a hybrid algorithm that combines the
best features of both algorithms. We rely on the underlying granularity-control
algorithm of pctl to switch intelligently between the parallel and sequential
algorithms as the program runs.

Now, we are going to see how we can apply a similar technique to reduction. Let
us return to the problem of finding the maximum value in an array of arrays of
numbers. The solution we are going to consider is the one given by the max2
function below.

int max2(const parray<parray<int>>& xss) {
using const_iterator = typename parray<parray<int>>::const_iterator;
const_iterator lo = xss.cbegin();
const_iterator hi = xss.cend();
int id = std::numeric_limits<int>::lowest();
parray<long> w = weights(xss.size(), [&] (const parray<int>& xs) {

return xs.size();
});
auto combine = [&] (int x, int y) {

return std::max(x, y);
};
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const_iterator b = lo;
auto lift_comp_rng = [&] (const_iterator lo, const_iterator hi) {

return w[hi - b] - w[lo - b];
};
auto lift_idx = [&] (int, const parray<int>& xs) {

return max(xs);
};
auto seq_reduce_rng = [&] (const_iterator lo, const_iterator hi) {

int m = id;
for (const_iterator i = lo; i != hi; i++) {

for (auto j = i->cbegin(); j != i->cend(); j++) {
m = std::max(m, *j);

}
}
return m;

};
return level2::reduce(lo, hi, id, combine, lift_comp_rng,

lift_idx, seq_reduce_rng);
}

Compared to our max1 function, we can see two differences:

1. The complexity function for lift, namely lift_comp_rng, calculates the
cost for a given range of input values rather than for a given individual
value. The cost is precomputed by the weights function, which is described
in a previous section.

2. The last argument to the reduce function is the sequential alternative body,
namely seq_reduce_rng.

To summarize, our level-1 solution, namely max1, had a parallel solution that
was expressed by nested instances of our reduce functions. In this section, we
saw how to use the level-2 reduce function to combine parallel and sequential
solutions to make a hybrid solution.

Template parameters

Table 26: Template parameters that are introduced in level 2.

Template parameter Description
Seq_reduce_rng Sequential alternative body for the

reduce operation
Lift_comp_rng Range-based lift complexity function
Seq_scan_rng_dst Sequential alternative body for the

scan operation
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Sequential alternative body for the lifting operator

class Seq_reduce_rng;

The sequential-reduce function is a C++ functor that takes a pair of iterators
and returns a result value. The Seq_reduce_rng class should provide a call
operator with the following type.

Result operator()(Iter lo, Iter hi);

Range-based lift-complexity function

class Lift_comp_rng;

The range-based lift-complexity function is a C++ functor that takes a pair of
iterators and returns a non-negative number. The value returned is a value to
account for the amount of work to be performed to apply the lift function to the
items in the right-open range [lo, hi) of the input sequence.

long operator()(Iter lo, Iter hi);

Sequential alternative body for the scan operation

class Seq_scan_rng_dst;

The sequential-scan function is a C++ functor that takes a pair of iterators,
namely lo and hi, and writes its result to a range in memory that is pointed
to by dst_lo. The Seq_scan_rng_dst class should provide a call operator with
the following type.

Result operator()(Iter lo, Iter hi, typename parray<Result>::iterator dst_lo);

Level 3

namespace pasl {
namespace pctl {
namespace level3 {

template <
class Input_iter,
class Output,
class Result,
class Lift_comp_rng,
class Lift_idx_dst,
class Seq_reduce_rng_dst

>
void reduce(Input_iter lo,

Input_iter hi,
Output out,
Result id,
Result& dst,
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Lift_comp_rng lift_comp_rng,
Lift_idx_dst lift_idx_dst,
Seq_reduce_rng_dst seq_reduce_rng_dst);

template <
class Input_iter,
class Output,
class Result,
class Output_iter,
class Lift_comp_rng,
class Lift_idx_dst,
class Seq_scan_rng_dst

>
void scan(Input_iter lo,

Input_iter hi,
Output out,
Result& id,
Output_iter outs_lo,
Lift_comp_rng lift_comp_rng,
Lift_idx_dst lift_idx_dst,
Seq_scan_rng_dst seq_scan_rng_dst,
scan_type st);

} } }

In this section, we are going to introduce the destination-passing-style interface
for reduction and scan. Relative to the previous one, this level introduces one
new concept. An output descriptor is a class that describes how objects of type
Result are to be initialized, combined, and copied. Let us see how to use an
output descriptor by continuing with our running example.

int max3(const parray<parray<int>>& xss) {
using const_iterator = typename parray<parray<int>>::const_iterator;
const_iterator lo = xss.cbegin();
const_iterator hi = xss.cend();
int id = std::numeric_limits<int>::lowest();
parray<long> w = weights(xss.size(), [&] (const parray<int>& xs) {

return xs.size();
});
auto combine = [&] (int x, int y) {

return std::max(x, y);
};
using output_type = level3::cell_output<int, decltype(combine)>;
output_type out(id, combine);
const_iterator b = lo;
auto lift_comp_rng = [&] (const_iterator lo, const_iterator hi) {

return w[hi - b] - w[lo - b];
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};
auto lift_idx_dst = [&] (int, const parray<int>& xs, int& result) {

result = max(xs);
};
auto seq_reduce_rng = [&] (const_iterator lo, const_iterator hi, int& result) {

int m = id;
for (const_iterator i = lo; i != hi; i++) {

for (auto j = i->cbegin(); j != i->cend(); j++) {
m = std::max(m, *j);

}
}
result = m;

};
int result;
level3::reduce(lo, hi, out, id, result, lift_comp_rng,

lift_idx_dst, seq_reduce_rng);
return result;

}

The only change in max3 relative to max2 is the use of the output descriptor
cell_output. This output descriptor is the simplest output descriptor: all it
does is apply the given combining operator directly to its arguments, writing the
result into a destination cell. The implementation of the cell output is shown
below.

namespace pasl {
namespace pctl {
namespace level3 {

template <class Result, class Combine>
class cell_output {
public:

using result_type = Result;
using array_type = parray<result_type>;
using const_iterator = typename array_type::const_iterator;

result_type id;
Combine combine;

cell_output(result_type id, Combine combine)
: id(id), combine(combine) { }

cell_output(const cell_output& other)
: id(other.id), combine(other.combine) { }

void init(result_type& dst) const {
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dst = id;
}

void copy(const result_type& src, result_type& dst) const {
dst = src;

}

void merge(const result_type& src, result_type& dst) const {
dst = combine(dst, src);

}

void merge(const_iterator lo, const_iterator hi, result_type& dst) const {
dst = id;
for (const_iterator it = lo; it != hi; it++) {

dst = combine(*it, dst);
}

}

};

} } }

The constructor takes the identity element and associative combining operator
and stores them in member fields. The init method writes the identity element
into the given destination cell. The copy method simply copies the value in
src to the dst cell. There are two merge methods: the first one applies the
combining operator, leaving the result in the dst cell. The second uses the
combining operator to accumulate a result value from a given range of input
items, leaving the result in the dst cell.

Because it assumes that objects of type Result can be copied efficiently, the
cell output descriptor does not demonstrate the benefit of the output-descriptor
mechanism. However, the benefit is clear when the Result objects are container
objects, such as pchunkedseq objects, which require linear work to be copied.

template <class Chunked_sequence>
class chunkedseq_output {
public:

using result_type = Chunked_sequence;
using const_iterator = const result_type*;

result_type id;

chunkedseq_output() { }

void init(result_type& dst) const {
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}

void copy(const result_type& src, result_type& dst) const {
dst = src;

}

void merge(result_type& src, result_type& dst) const {
dst.concat(src);

}

void merge(const_iterator lo, const_iterator hi, result_type& dst) const {
dst = id;
for (const_iterator it = lo; it != hi; it++) {

merge(*it, dst);
}

}

};

The first merge method concatenates the src and dst containers, leaving the
result in dst and taking logarithmic work to complete. As such, the chunkedseq
output descriptor can merge results taking logarithmic work in the size of the
chunked sequence, thereby avoiding costly linear-work copy merges that would
be imposed if we were to instead use the cell output descriptor for the same task.
The second merge method simply combines all items in the range using the first
merge method.

Template parameters

Table 27: Template parameters that are introduced in level 3.

Template parameter Description
Input_iter Type of an iterator for input

values
Output_iter Type of an iterator for output

values
Output Type of the object to manage the

output of the reduction
Lift_idx_dst Lift function in

destination-passing style
Seq_reduce_rng_dst Sequential reduce function in

destination-passing style
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Input iterator

class Input_iter;

An instance of this class must be an implementation of the random-access
iterator.

An iterator value of this type points to a value from the input stream.

Output iterator

class Output_iter;

An instance of this class must be an implementation of the random-access
iterator.

An iterator value of this type points to a value from the output stream.

Output

class Output;

Type of the object to receive the output of the reduction.

Table 28: Constructors that are required for the Output class.

Constructor Description
copy constructor Copy constructor

Table 29: Public methods that are required for the Output class.

Public method Description
init Initialize given result object
copy Copy the contents of a specified object

to a specified cell
merge Merge result objects

Copy constructor

Output(const Output& other);

Copy constructor.

Result initializer

void init(Result& dst) const;

Initialize the contents of the result object referenced by dst.

Copy
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void copy(const Result& src, Result& dst) const;

Copy the contents of src to dst.

Merge

void merge(Result& src, Result& dst) const; // (1)
void merge(Output_iter lo, Output_iter hi, Result& dst) const; // (2)

(1) Merge the contents of src and dst, leaving the result in dst.

(2) Merge the contents of the cells in the right-open range [lo, hi), leaving
the result in dst.

Destination-passing-style lift

class Lift_idx_dst;

The destination-passing-style lift function is a C++ functor that takes an
index, an iterator, and a reference on result object. The call operator for
the Lift_idx_dst class should have the following type.

void operator()(long pos, const Item& xs, Result& dst);

The value that is passed in for pos is the index in the input sequence of the
item x. The object referenced by dst is the object to receive the result of the
lift function.

Destination-passing-style sequential lift

class Seq_reduce_rng_dst;

The destination-passing-style sequential lift function is a C++ functor that takes
a pair of iterators and a reference on an output object. The call operator for the
Seq_reduce_dst class should have the following type.

void operator()(Input_iter lo, Input_iter hi, Result& dst);

The purpose of this function is provide an alternative sequential algorithm that
is to be used to process ranges of items from the input. The range is specified
by the right-open range [lo, hi). The object referenced by dst is the object
to receive the result of the sequential lift function.

Level 4

namespace pasl {
namespace pctl {
namespace level4 {

template <
class Input,
class Output,
class Result,
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class Convert_reduce_comp,
class Convert_reduce,
class Seq_convert_reduce

>
void reduce(Input& in,

Output out,
Result id,
Result& dst,
Convert_reduce_comp convert_comp,
Convert_reduce convert,
Seq_convert_reduce seq_convert);

template <
class Input,
class Output,
class Result,
class Output_iter,
class Merge_comp,
class Convert_reduce_comp,
class Convert_reduce,
class Convert_scan,
class Seq_convert_scan

>
void scan(Input& in,

Output out,
Result id,
Output_iter outs_lo,
Merge_comp merge_comp,
Convert_reduce_comp convert_reduce_comp,
Convert_reduce convert_reduce,
Convert_scan convert_scan,
Seq_convert_scan seq_convert_scan,
scan_type st);

} } }

In the last level of our scan and reduce operators, we are going to introduce one
more concept. At this level, reduction and scan no longer take as input a pair
of iterator values. Instead, the input is described in an even more generic form.
An input descriptor is an object that describes a process for dividing an input
container into two or more pieces. The following input descriptor is the one we
use to represent a range encoded by a pair or random-access iterator values.

namespace pasl {
namespace pctl {
namespace level4 {
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template <class Input_iter>
class random_access_iterator_input {
public:

using self_type = random_access_iterator_input;
using array_type = parray<self_type>;

Input_iter lo;
Input_iter hi;

random_access_iterator_input() { }

random_access_iterator_input(Input_iter lo, Input_iter hi)
: lo(lo), hi(hi) { }

bool can_split() const {
return size() >= 2;

}

long size() const {
return hi - lo;

}

void split(random_access_iterator_input& dst) {
dst = *this;
long n = size();
assert(n >= 2);
Input_iter mid = lo + (n / 2);
hi = mid;
dst.lo = mid;

}

array_type split(long) {
array_type tmp;
return tmp;

}

self_type slice(const array_type&, long _lo, long _hi) {
self_type tmp(lo + _lo, lo + _hi);
return tmp;

}

};

} } }
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As usual, the pair (lo, hi) represents the right-open index [lo, hi). The
can_split method returns true when the range contains at least two elements
and false otherwise. The size method returns the number of items in the
range. The split method divides the range in two subranges of approximately
the same size, leaving the result in dst. The slice method creates a subrange
starting at lo + _lo and ending at lo + _hi.

Now, we are going to see one feature that we have at level 4 that we lacked
in previous levels. Because we can provide a custom input descriptor, we can
provide one that destroys its input as the reduction operation proceeds. It turns
out that this feature is just what we need to encode a useful algorithmic pattern:
a pattern that updates a chunked sequence container in place and all in parallel.
First, let us see the input descriptor, and then we will see it put to work. The
chunkedseq input descriptor removes items from a chunked sequence structure
as the reduction repeatedly divides the input.

template <class Chunkedseq>
class chunkedseq_input {
public:

using self_type = chunkedseq_input<Chunkedseq>;
using array_type = parray<self_type>;

Chunkedseq seq;

chunkedseq_input(Chunkedseq& _seq) {
_seq.swap(seq);

}

chunkedseq_input(const chunkedseq_input& other) { }

bool can_split() const {
return seq.size() >= 2;

}

void split(chunkedseq_input& dst) {
long n = seq.size() / 2;
seq.split(seq.begin() + n, dst.seq);

}

array_type split(long) {
array_type tmp;
assert(false);
return tmp;

}

self_type slice(const array_type&, long _lo, long _hi) {
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self_type tmp;
assert(false);
return tmp;

}

};

Let us see this input descriptor at work. Recall that our pchunkedseq class
provides a keep_if method, which removes items from the container according
to a given predicate function. The following example shows how we can remove
all odd values from a chunked sequence of ints.

pchunkedseq<int> xs = { 3, 10, 35, 2, 2, 100 };
xs.keep_if([&] (int x) { return x%2 == 0; });
std::cout << "xs = " << xs << std::endl;

The output is the following. All the odd values were deleted from the container.

{ 10, 2, 2, 100 }

The body of this method simply calls to a generic function in the chunked
module, passing references to the chunked sequence object, seq.

template <class Pred>
void keep_if(const Pred& p) {

chunked::keep_if(p, seq, seq);
}

The body of this function is shown below. Here, we see that, before the reduction,
we feed the input sequence xs to our input descriptor, in. After the reduce
operation completes, xs is going to be empty. All the items that survived the
filtering process go into the dst chunked sequence.

namespace chunked {

template <class Pred, class Chunkedseq>
void keep_if(const Pred& p, Chunkedseq& xs, Chunkedseq& dst) {

using input_type = level4::chunkedseq_input<Chunkedseq>;
using output_type = level3::chunkedseq_output<Chunkedseq>;
using value_type = typename Chunkedseq::value_type;
input_type in(xs);
output_type out;
Chunkedseq id;
auto convert_reduce_comp = [&] (input_type& in) {

return in.seq.size();
};
auto convert_reduce = [&] (input_type& in, Chunkedseq& dst) {

while (! in.seq.empty()) {
value_type v = in.seq.pop_back();
if (p(v)) {
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dst.push_front(v);
}

}
};
auto seq_convert_reduce = convert_reduce;
level4::reduce(in, out, id, dst, convert_reduce_comp,

convert_reduce, seq_convert_reduce);
}

}

To summarize, we saw that input descriptors are general enough to describe
read-only inputs as well as inputs that are to be consumed destructively. The
keep_if example shows the usefulness of the latter input type. Using keep_if
we can process our input sequence destructively and in parallel. As a bonus,
during the processing, chunks can be reused on the fly by the memory allocator
to construct the output chunked sequence, thanks to the property that chunks
are popped off the input sequence as the reduce is working.

Template parameters

Table 30: Template parameters that are introduced in level 4.

Template parameter Description
Input Type of input to the reduction
Convert_reduce Function to convert the items of a

given input and then produce a
specified reduction on the converted
items

Convert_scan Function to convert the items of a
given input and then produce a
specified scan on the converted items

Seq_convert_scan Alternative sequentialized version of
the Convert_scan function

Convert_reduce_comp Complexity function associated with
a convert function

Seq_convert_reduce Alternative sequentialized version of
the Convert_reduce function

Input

class Input;
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Table 31: Constructors that are required for the Input class.

Constructor Description
copy constructor Copy constructor

Table 32: Public methods that are required for the Input class.

Public method Description
can_split Return value to indicate whether split is

possible
size Return the size of the input
slice Return a specified slice of the input
split Divide the input into two pieces

Copy constructor

Input(const Input& other);

Copy constructor.

Can split

bool can_split() const;

Return a boolean value to indicate whether a split is possible.

Size

long size() const;

Returns the size of the input.

Slice

Input slice(parray<Input>& ins, long lo, long hi);

Returns a slice of the input that occurs logically in the right-open range [lo,
hi), optionally using ins, the results of a precomputed application of the split
function.

Split

void split(Input& dst); // (1)
parray<Input> split(long n)); // (2)

(1) Transfer a fraction of the contents of the current input object to the input
object referenced by dst.

The behavior of this method may be undefined when the can_split function
would return false.
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(2) Divide the contents of the current input object into at most n pieces,
returning an array which stores the new pieces.

Convert-reduce complexity function

class Convert_reduce_comp;

The convert-complexity function is a C++ functor which returns a posi-
tive number that associates a weight value to a given input object. The
Convert_reduce_comp class should provide the following call operator.

long operator()(const Input& in);

Convert-reduce

class Convert_reduce;

The convert function is a C++ functor which takes a reference on an input value
and computes a result value, leaving the result value in an output cell. The
Convert_reduce class should provide a call operator with the following type.

void operator()(Input& in, Result& dst);

Sequential convert-reduce

class Seq_convert_reduce;

The sequential convert function is a C++ functor whose purpose is to substitute
for the ordinary convert function when input size is small enough to sequentialize.
The Seq_convert_reduce class should provide a call operator with the following
type.

void operator()(Input& in, Result& dst);

The sequential convert function should always compute the same result as the
ordinary convert function given the same input.

Convert-scan

class Convert_scan;

The convert function is a C++ functor which takes a reference on an input value
and computes a result value, leaving the result value in an output cell. The
Convert_scan class should provide a call operator with the following type.

void operator()(Input& in, Output_iter outs_lo);

76



Sequential convert-scan

class Seq_convert_scan;

The sequential convert function is a C++ functor whose purpose is to substitute
for the ordinary convert function when input size is small enough to sequentialize.
The Seq_convert_scan class should provide a call operator with the following
type.

void operator()(Input& in, Output_iter outs_lo);

The sequential convert function should always compute the same result as the
ordinary convert function given the same input.

Derived operations

Type-level operators Sometimes, as we will see in this section, the pctl defines
a function that both takes as template parameter an iterator class and extracts
from that iterator class the type of the items that are referenced by the iterator.
For this purpose, the pctl defines a few type-level functions whose purpose is to
extract from the iterator the corresponding value, reference and pointer types.

namespace pasl {
namespace pctl {

template <class Iter>
using value_type_of = typename std::iterator_traits<Iter>::value_type;

template <class Iter>
using reference_of = typename std::iterator_traits<Iter>::reference;

template <class Iter>
using pointer_of = typename std::iterator_traits<Iter>::pointer;

} }

Pack

namespace pasl {
namespace pctl {

template <class Item_iter, class Flags_iter>
parray<value_type_of<Item_iter>> pack(Item_iter lo,

Item_iter hi,
Flags_iter flags_lo);

} }
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Filter

namespace pasl {
namespace pctl {

template <class Iter, class Pred_idx>
parray<value_type_of<Iter>> filteri(Iter lo, Iter hi, Pred_idx pred_idx);

template <class Iter, class Pred>
parray<value_type_of<Iter>> filter(Iter lo, Iter hi, Pred pred);

} }

Predicate

class Pred; // (1)
class Pred_idx; // (2)

bool operator()(const Item& x);

bool operator()(long pos, const Item& x);

Max index

namespace pasl {
namespace pctl {

template <
class Iter,
class Item,
class Compare,
class Lift

>
long max_index(Iter lo, Iter hi, Item id, Compare compare, Lift lift);

template <
class Iter,
class Item,
class Compare

>
long max_index(Iter lo, Iter hi, Item id, Compare compare);

} }

Lift function
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class Lift;

Item operator()(const Item& x);

Comparison function

class Compare;

bool operator()(Item x, Item y);

In-place operations

Here, document the functions which are exported by dpsdatapar.hpp.

Merging and sorting

class Compare;

bool operator()(const Item& x, const Item& y);

class Weight;

long operator()(const Item& x);

class Weight_rng;

long operator()(const Item& lo, const Item* hi);

Comparison-based merge

Iterator based

namespace pasl {
namespace pctl {

template <
class Input_iter,
class Output_iter,
class Compare

>
void merge(Input_iter first1, Input_iter last1,

Input_iter first2, Input_iter last2,
Output_iter d_first, Compare compare);

template <
class Input_iter,
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class Output_iter,
class Weight,
class Compare

>
void merge(Input_iter first1, Input_iter last1,

Input_iter first2, Input_iter last2,
Output_iter d_first, Weight weight,
Compare compare);

} }

namespace pasl {
namespace pctl {
namespace range {

template <
class Input_iter,
class Output_iter,
class Weight_rng,
class Compare

>
void merge(Input_iter first1, Input_iter last1,

Input_iter first2, Input_iter last2,
Output_iter d_first, Weight_rng weight_rng,
Compare compare);

} } }

Parallel chunked sequence

namespace pasl {
namespace pctl {
namespace chunked {

template <class Item, class Compare>
pchunkedseq<Item> merge(pchunkedseq<Item>& xs, pchunkedseq<Item>& ys,

Compare compare);

template <class Item, class Weight, class Compare>
pchunkedseq<Item> merge(pchunkedseq<Item>& xs, pchunkedseq<Item>& ys,

Weight weight, Compare compare);

} } }

namespace pasl {
namespace pctl {
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namespace range {

template <class Item, class Weight_rng, class Compare>
pchunkedseq<Item> pcmerge(pchunkedseq<Item>& xs, pchunkedseq<Item>& ys,

Weight_rng weight_rng, Compare compare);

} } }

Comparison-based sort

Iterator based

namespace pasl {
namespace pctl {

template <class Iter, class Compare>
void sort(Iter lo, Iter hi, Compare compare);

template <class Iter, class Weight, class Compare>
void sort(Iter lo, Iter hi, Weight weight, Compare compare);

} }

namespace pasl {
namespace pctl {
namespace range {

template <class Iter, class Weight_rng, class Compare>
void sort(Iter lo, Iter hi, Weight_rng weight_rng, Compare compare);

} } }

Parallel chunked sequence

namespace pasl {
namespace pctl {
namespace pchunked {

template <class Item, class Compare>
pchunkedseq<Item> sort(pchunkedseq<Item>& xs, Compare compare);

template <class Item, class Weight, class Compare>
pchunkedseq<Item> sort(pchunkedseq<Item>& xs,

Weight weight,
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Compare compare);

} } }

namespace pasl {
namespace pctl {
namespace pchunked {
namespace range {

template <class Item, class Weight_rng, class Compare>
pchunkedseq<Item> sort(pchunkedseq<Item>& xs,

Weight_rng weight_rng,
Compare compare);

} } } }

Integer sort

Iterator based

namespace pasl {
namespace pctl {

template <class Iter>
void integersort(Iter lo, Iter hi);

} }

Parallel chunked sequence

namespace pasl {
namespace pctl {
namespace pchunked {

template <class Integer>
pchunkedseq<Integer> integersort(pchunekdseq<Integer>& xs);

} } }
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