
The benchmark-plot tool

Umut Acar, Arthur Charguéraud, Mike Rainey

17 October 2014

Synopsis

pplot [MODE ] [OPTIONS_FOR_MODE ]

Description

The benchmark-plot tool is a program that generates various types of plots
for given data that is generated by the benchmark-run tool. Supported types
include bar plots, scatter plots, tables, and speedup plots. Various temporary
files used to generate plots and tables can be found in the folder _results/.

Options

Plot modes

The mode specifier MODE is optional: if not present, the default plot to be
generated is the bar plot. Otherwise, MODE can be one of the following: bar,
scatter, table, or speedup.

Mode-specific options

Options common to all

-width n Specify width n of the plot to be generated (in pixels).
-height n Specify height n of the plot to be generated (in pixels).
-title t Specify the title string t to be displayed in the plot.
-input filename Specify a file filename where to read results (default is

results.txt).
-output filename Specify a file filename where to plot results.

1



Options common to bar and scatter

-legend-pos [topright|topleft|...] Select an R code for the legend (see
R codes for legend or file legend.ml).

-chart k1,k2,. . . Select a combination of keys by which to divide program
runs among charts.

-series k1,k2,. . . Select a combination of keys by which to divide program
runs among series.

-group-by k1,k2,. . . Select a combination of keys by which to divide program
runs among groups.

-y x Select the key to plot on the y axis.
-ylabel lab Label the y axis as lab.
-ymin n Set the origin of the y axis to n.
-ymax n Set the maximum value of the y axis to n.
--yzero Set the origin of the y axis to zero.
--ylog Use a log scale for the y axis.

Options for scatter only

-xlabel lab Label the x axis as lab.
-xmin n Set the origin of the x axis to n.
-xmax n Set the maximum value of the x axis to n.
--xzero Set the origin of the x axis to zero.
-drawline n Draw a horizontal line originating from n on the y axis.

Options for bar only:

--xtitles-vertical Use a vertical orientation for the label of the x axis.

or:

-xtitles-dir [horizontal|vertical] Set the orientation to use for the labels
under the bars.

Options for table only

-table k1,k2,. . . Select a combination of keys by which to divide program
runs among tables.

-row k1,k2,. . . Select a combination of keys by which to divide program runs
among rows of the table.

-col k1,k2,. . . Select a combination of keys by which to divide program runs
among columns of the table.

2



-cell k Select the key whose corresponding value is to be displayed in the cells
of the table.

-group-by k1,k2,. . . Select a combination of keys by which to divide program
runs among groups of columns in the table.

Options for speedup only

-chart k1,k2,. . . Select a combination of keys by which to divide the program
runs among speedup charts.

-series k1,k2,. . . Select a combination of keys by which to divide the program
runs among series.

-group-by k1,k2,. . . Select a combination of keys by which to divide the
program runs among groups.

-legend-pos [topright|topleft|...] Specify the position of the legend in
the plot (see R codes for legend or file legend.ml).

--log Use a log scale for the speedup curves.
--factored Generate a “factored” speedup plot (see instructions below).

Alternative syntax for providing mode

pplot -mode [MODE ] [OPTIONS_FOR_MODE ]

Examples

Building and running a simple experiment

The following commands build the benchmarking tools and then gather some
data from a few runs of our example program, Fibonacci.

make -C examples/basic fib
make prun
prun -prog examples/basic/fib -algo recursive,cached -n 39,40 -runs 2
make pplot

Bar plots

The first plot we generate is a simple bar plot in which bars are grouped together
by arguments of n and apart by arguments o algo. The y axis represents run
time.

pplot -x n -y exectime -series algo

3



Another way to make the same bar plot is the following.

pplot bar -x n -y exectime -series algo

This command generates two bar plots: one for each value of algo, namely
recursive and cached.

pplot bar -x n -y exectime -chart algo

In this case, bars are separated by arguments of both n an algo.

pplot bar -x n,algo -y exectime --xtitles-vertical

Scatter plots

We generate a scatter plot for the same data set as follows. Each algorithm in
the plot is represented by a labeled curve.

pplot scatter -x n -y exectime -series algo

Tables

We can generate a table showing breakdowns of run times. The columns are
represented by the values of algo and the rows by values of n.

pplot table -row n -col algo -cell exectime

A slight change gives a similar result, but one with multiple tables such that
each table represents a different value of algo.

pplot table -row n -table algo -cell exectime

Another slight changes gives a similar table where rows are represented by
combinations of values of both n and algo.

pplot table -row n,algo -cell exectime

4



Speedup plots

Traditional speedup plots

The speedup curve for a series of runs of a given parallel program is calculated
by

speedup(P ) = TS

TP

where P denotes the number of processors used by the program, TS the time
taken by the sequential baseline program, and TP the the taken by the parallel
program using P processors.
In order to generate a speedup plot, we need to follow a few simple steps. First,
we need to ensure that the programs that we wish to benchmark print to stdout
the running time in the format
exectime t
where t is a floating-point number that expresses wall-clock time (in seconds).
For example, one such running-time report is exectime 4.32, which reports
that running time was 4.32 seconds. Second, we need to perform some runs of
the programs that we want to benchmark, collecting the data as we go. The
data that we need to collect is generated automatically by the “speedup” mode
of the prun tool. Third, after the benchmarking runs complete, we need to run
the pplot command to generate the speedup plot.
Let us consider the following example, where we are going to compare the
speedup curves resulting two competing algorithms. In our sample benchmark
program, the algorithm to be measured is selected by the command-line key
-algo. Our baseline algorithm is specified by the value foo and our parallel
algorithm by the value bar.

make prun
prun speedup -baseline "examples/others/speedup.sh -algo foo" -baseline-runs 1 -parallel "examples/others/speedup.sh -algo bar -proc 1,2,3,4" -runs 2
pplot speedup

We can take multiple speedup curves as well. The following example extends our
previous example by introducing a new parameter, namely n, and two values for
n: 4 and 5. The plot generated for this example will have two speedup curves,
one for each setting of n.

prun speedup -baseline "examples/others/speedup.sh -algo foo" -baseline-runs 1 -parallel "examples/others/speedup.sh -algo bar -proc 1,2,3,4" -runs 2 -n 1,5
pplot speedup -series n

Here is another example, this time using our parallel Fibonacci benchmark.

prun speedup -baseline "bench.baseline" -parallel "bench.opt -proc 1,2" -bench fib -n 39

5



Factored speedup plots

A “factored speedup plot” is a speedup plot that shows, in addition to an
actual speedup curve of a given benchmark program, three or more “synthetic”
speedup curves for the same benchmark program. Each synthetic speedup curve
is just a curve that shows how the actual speedup curve might look, provided
that overheads related to a given source, such as scheduling overhead, could be
disregarded.

Our plotting tool currently generates three synthetic speedup curves by default
and one extra synthetic curve, optionally. The first synthetic curve is the
maximal speedup curve. This curve is defined by the function

maximal(P ) = P · TS

T1

where P denotes the number of processors, T1 the running time of the parallel
program on a single processor, and TS the running time of the sequential baseline
program. The maximal speedup curve gives a realistic upper bound on the
parallel speedup by taking into account any additional work that must be
performed by the parallel run compared to the sequential run.

The second synthetic curve is the idle-time-specific curve. This curve is
defined by the function

idletime(P ) = P · TS

T1 + IP

where IP denotes the time spent by a processor when the processor is idling and
waiting for work, combined across all processors. The pplot tool expects for the
value of IP to be reported by the benchmark program to stdout in the form:
total_idle_time t, where t denotes the total idle time in seconds. This curve
represents the speedup curve that we might expect to see if we consider only the
performance of the parallel program on a single processor and the amount of
idle time as the number of processors increase.

The third synthetic curve is the inflation-specific curve. This curve is defined
by the function

inflation(P ) = P · TS

T1 + FP

where FP denotes the “work inflation”. The work inflation of a parallel com-
putation is the amount of time by which the computation is slowed down due
to effects that are not related to processor utilization. The most significant of
these effects are the increased costs relating to memory accesses in a parallel
computation where multiple processors are sharing the same memory controllers.

6



Because the work inflation term FP is not readily measured in a direct fashion,
we derive the inflation-specific speedup from (P · TS)/(P · TP − IP ).

prun speedup -baseline "examples/others/speedup.sh -algo foo" -baseline-runs 1 -parallel "examples/others/speedup.sh -algo bar -proc 1,2,3,4" -runs 2
pplot speedup --factored

The factored speedup mode can optionally generate one more curve: the elision-
specific curve. This curve is calculated by

elision(P ) = P · TS

TE

where TE denotes the running time of the “sequential elision” of the parallel
benchmark. The sequential elision is the program that is derived by substituting
all parallel function calls in the program by sequential function calls. What
remains in the elision program is just the parallel algorithm, minus the overheads
imposed by parallel scheduling.

prun speedup -baseline "examples/others/speedup.sh -algo foo" -baseline-runs 1 -elision "examples/others/speedup.sh -algo elision_of_bar" -elision-runs 1 -parallel "examples/others/speedup.sh -algo bar -proc 1,2,3,4" -runs 2
pplot speedup --factored

7


	Synopsis
	Description
	Options
	Plot modes
	Mode-specific options
	Options common to all
	Options common to bar and scatter
	Options for scatter only
	Options for bar only:
	Options for table only
	Options for speedup only
	Alternative syntax for providing mode


	Examples
	Building and running a simple experiment
	Bar plots
	Scatter plots
	Tables
	Speedup plots
	Traditional speedup plots
	Factored speedup plots



