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Abstract
A classic problem in parallel computing is determining
whether to execute a task in parallel or sequentially. If small
tasks are executed in parallel, the overheads due to task cre-
ation can be overwhelming. If large tasks are executed se-
quentially, processors may spin idle, resulting again in sub-
optimal speedups. Although this “granularity problem” is
identified to be an important problem, it is not well under-
stood; broadly applicable solutions remain elusive.

We propose techniques for controlling the granularity in
implicitly parallel programming languages to achieve par-
allel efficiency. To understand the importance of granular-
ity control, we extent Brent’s theorem (a.k.a.’s work-time
principle) to include task creation overheads. Using a cost
semantics for a general-purpose language in the style of
lambda calculus with parallel tuples, we then show that task-
creation overheads can slowdown parallel execution by a
multiplicative factor. We propose oracle scheduling to re-
duce these overheads by using estimates of the sizes of par-
allel tasks. We show that if the oracle provides in constant
time estimates that are accurate within a constant multiplica-
tive factor then oracle scheduling provable reduces the task-
creation overheads for a class of parallel computations.

We realize the oracle scheduling by combining static and
dynamic techniques. We require the programmer to provide
the asymptotic complexity for parallel tasks and use run-
time profiling to determine hardware-specific constant fac-
tors. We implement the proposed approach and propose a
compiler for it as extension of the Manticore compiler for
Parallel ML. Our empirical evaluation shows that we can re-
duce the run-time overheads due to task creation down to
between 3 and 13 percent of the sequential time and can ob-
tain scalable speedups when running on multiple processors.

[Copyright notice will appear here once ’preprint’ option is removed.]

1. Introduction
Explicit parallel programming provides full control over
parallel resources by offering primitives for creating and
managing parallel tasks, which are small, independent threads
of control. As a result, the programmer can, at least in princi-
ple, write efficient parallel programs by performing a careful
cost-benefit analysis to determine which tasks should be ex-
ecuted in parallel and under what conditions. This approach,
however, often requires reasoning about low-level execu-
tion details, such data races or concurrent effects, which is
known to be notoriously hard; it can also result in code that
performs well in a particular hardware setting but not in
others.

The complexities of parallel programming with explicit
languages have motivated interest in implicitly parallel lan-
guages, such as Cilk [11], Manticore [14–16], Multilisp [19],
NESL [7]. These languages enable the programmer to ex-
press parallelism implicitly via language constructs, e.g.,
parallel sequences, parallel arrays, parallel tuples. This im-
plicit approach delegates the task of utilizing the parallelism
exposed by the program to the compiler and the run-time
system, enabling a high level of programming style. As an
implicit parallel program executes, it exposes opportunities
or parallelism (as indicated by the parallel constructs); the
language run-time system creates parallel tasks as needed.
To execute parallel tasks efficiently, implicit programming
languages rely on a scheduler for distributing parallel tasks
among the processors to perform load balancing. Various
scheduling techniques and practical schedulers have been
developed, including work-stealing schedulers [10], and
depth-first-search schedulers [6].

Experience with implicitly parallel programs shows that
one of the most important decisions that any implicit parallel
language must make is determining whether or not to exploit
an opportunity for parallelism by creating a parallel task. Put
another way, the question is to determine which tasks to exe-
cute in parallel and which other tasks to execute sequentially.
This problem, often referred to as the granularity problem, is
important because creating a parallel task requires additional
overhead and because every such overhead matters: since
the speedups achievable via parallel computation is bounded
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by the number of processors, often a small constant factor,
any increase in the overheads, however small, matters. When
combined with the fact that many parallel programs natu-
rally expose many more opportunities for parallelism than
the number of available processors, creating many tasks can
limit the practical efficiency of parallel programs.

No known broadly applicable solution to the granular-
ity problem exists. Theoretical analysis often ignores task-
creation overheads, yielding us no significant clues about
how these overheads may affect efficiency. Practical imple-
mentations often focus on reducing task-creation overheads
instead of attempting to control granularity. As a result, prac-
titioners often deal with this issue by trying to estimate the
right granularity of work that would be sufficiently large to
execute in parallel. More specifically, programmers try to de-
termine the input sizes at which tasks become too small to
pay off the costs of parallel task creation and sequentialize
such tasks. Since the running time of a task depends on the
hardware, the programmer must make the best decision they
can by taking into account the specifics of the hardware. This
manual granularity control is bound to yield suboptimal re-
sults and/or non-portable code [36].

In this paper, we propose theoretical and practical tech-
niques for the granularity problem in implicit parallel-
programming languages. Our results include theorems that
take into account the task-creation overheads to characterize
their impact on parallel run time, which we show to be sig-
nificant (Sections 2 and 4). To reduce these overheads, we
consider a granularity control technique that relies on an ora-
cle for determining the run-time of parallel tasks(Section 4).
We show that if the oracle can be implemented efficiently
and accurately, it can be used to improve efficiency for a rel-
atively large class of computations. Based on this result, we
describe how the oracle approach be realized in practice by
combining with known schedulers; we call this technique or-
acle scheduling because it relies on an oracle to estimate task
sizes and because it can be used with practically any other
scheduler (Section 5). Finally, we propose an implemen-
tation of oracle scheduling that uses complexity functions
defined by the user to approximate accurately run-time of
parallel tasks Section 5. We present an implementation and
evaluation of the proposed approach by extending a subset
of the Caml language (Sections 6 and 7).

Brent’s theorem [12], commonly called the work-time
principle, characterizes arguably the most important prop-
erty of parallel programs: that they can be executed ef-
ficiently with multiple processors. More precisely Brent
shows that we can execute a computation with w raw-
work and d raw-depth, which do not include task-creation
overheads, in no more than w/P + d steps on P proces-
sors using any greedy scheduler (note that the bound is
tight within a factor of two). However attractive, the the-
orem ignores an important factor: task-creation overheads,
which are assumed to be zero. To understand the impact of

task-creation overheads, we therefore start with this funda-
mental theorem and generalize it to take them into account
(Section 2). Specifically, we consider the standard directed-
acyclic-graph (DAG) mode for parallel computations and
show that a computation with total workW and total depth
D, where both include the task-creation overheads, can be
executed in no more thanW/P +D steps.

Although generalized Brent’s theorem yields a run-time
bound that is symmetric to the original bound, the proof is
entirely different. In fact, a straightforward generalization of
the original proof only yields a weaker bound and requires
reasoning about both the raw and the total work/depth. The
reason for this increase in the proof complexity is that over-
heads are not like other unit work: they are indivisible (it is
not realistic to assume that they can be divided into parts that
can be performed piecewise) but they don’t have unit costs.
Perhaps the most important point about this result is that it
show shows that the task-creation overheads contribute di-
rectly to the parallel run time and not in a surprising way:
they are just like any other work (even though they are indi-
visible). We note that Brent’s theorem also assumes a greedy
scheduler that can find work immediately when available but
this assumption is reasonably realistic: parallel schedulers
can match Brent’s bound asymptotically under mild assump-
tions.

To determine precisely the overheads of task creation in
implicitly parallel programs, we consider a lambda calculus
with parallel tuples and present a cost-semantics for evaluat-
ing expression of this language. The cost semantics yield raw
work/depth and total work/depth of each evaluated expres-
sion. Using this cost semantics, we show that task creation
overheads can be significant: a multiplicative factor times
the raw-work. By an application of the generalized Brent’s
theorem, this implies that such multiplicative increases in
work affect the parallel run-time directly. To reduce task-
creation overheads, we propose an alternative oracle seman-
tics that capture a known principle for avoiding the task-
creation overheads: evaluate a task in parallel only if its
is sufficiently large, i.e., greater than some constant κ. We
show that the oracle semantics can decrease the overheads
of task-creation by any (desired) constant factor κ, but only
at the cost of increasing the total depth by a similarly large
factor. This results suggests that in practice some care will
be needed to select κ, because otherwise it can reduce the
parallel slackness assumption [37] that some parallel sched-
ulers assume to match the Brent’s theorem.

The bounds with the oracle semantics suggests that we
can reduce the task-creation overheads significantly, if we
can realize the semantics in practice. This is impossible un-
fortunately because it requires the ability to determine a pri-
ori task-creation overheads and without incurring other over-
heads. We show, however, that a realistic oracle that can
give constant-factor approximations to the task run times
can still result in similar reductions in the overheads for a
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reasonably broad class of computations (Section 4). We also
show that unless care is taken, the realistic oracle can ac-
tually further increase the called unless it is called period-
ically. This outcome, i.e., that attempts at controlling the
granularity can actually backfire and slow down the pro-
gram further, was an interesting outcome of our analysis.
For a broad class of computations, including many recursive,
divide-and-conquer computations, we show that this worst
case can be avoided.

To realize the oracle semantics in practice, we describe
(Section 5) a scheduling technique that we call oracle
scheduling that consists of a task-size estimator that can esti-
mate actual run time of parallel tasks in constant-time within
a constant factor of accuracy and a conventional greedy
scheduling algorithms; many schedulers, e.g., work-stealing
algorithm, depth-first schedulers are all greedy. Combined
together, these can be used to perform efficient parallel task
creation and scheduling by selectively executing in paral-
lel only those tasks that have a large parallel run-time. We
describe an instance of the oracle scheduler that relies on
an estimator that uses asymptotic cost functions (asymtotic
complex bounds) and judicious use of run-time profiling
techniques to estimate actual run-times accurately and effi-
ciently. This approach combines an interesting property of
asymptotic complexity bounds, which assume away hard-
ware dependent constant, and profiling techniques, which
can be used to determine precisely these constants. In this
work, we only consider programs for which the execution
time is (with high probability) proportional to the value ob-
tained by evaluating the asymptotic complexity expression.

We present a prototype implementation of the proposed
approach (Section 6) by extending the OCAML language to
support parallel tuples, and complexity functions, and trans-
lating programs written in this extended language to the
PML (Parallel ML) language [15]. Although our implemen-
tation requires the programmer to enter the complexity infor-
mation, these could also be inferred in some cases cases via
static analysis (e.g., [24] and references thereof). We extend
the Manticore compiler for PML to support oracle schedul-
ing and use it to compile generated PML programs. Our ex-
periments (Section 7) show that oracle implementation can
reduce the overheads of a single processor parallel execution
to 3 and 13 percent of the sequential time When using 16
processors, we achieve 7- to 15-fold speedups on an AMD
machine and 17- to 21-fold speedups on an Intel machine
(Intel machines typically show superlinear effects).

2. Generalizing Brent’s theorem
We represent a parallel computation with a directed acyclic
graph, called computation DAG. Nodes in the graph repre-
sent atomic computations. Edges between nodes represent
precedence relations, in the sense that an edge from a to b in-
dicates that the execution of a must be completed before the
execution of b can start. Every computation DAG includes

Figure 1. An example computation DAG.

a source node and a sink node, representing the starting and
the end points of the computation, respectively. Those nodes
are such that all nodes of a computation DAG are reachable
from the source node, and the sink node is reachable from all
nodes. An example computation DAG appears in Figure 1.

In the traditional computational model, every atomic
computation is considered to take a single unit of time. In
other words, every node has weight 1. In this setting, we
can define the standard notion of work and depth, which we
here call raw-work and raw-depth. The raw-work of a com-
putation graph is equal to the total number of nodes that it
contains. The raw-depth of the computation graph is equal
to the total number of nodes along the longest path. Brent
proved the following bound.

Theorem 2.1 (Brent’s theorem) Let G be a computation
DAG with w raw work and d raw depth. Any greedy sched-
uler can execute the computation in G in time O(wP + d) on
a P -processor parallel machine

Proof We recall Brent’s proof since our aim is to generalize
it. Consider the nodes at depth i in the DAG, and assume
there are wi of them. A greedy scheduler can spend no
more than time

⌈
wi

P

⌉
for executing those nodes. Summing

up over the various depths, one can thus deduce that the total
execution time does not exceed:

d∑
i=1

⌈wi
P

⌉
≤

d∑
i=1

(
wi
P

+ 1) ≤
∑d
i=1 wi
P

+ d ≤ w

p
+ d

�

Observe that the bound provided by Brent’s theorem is tight,
because the execution time is at least max

(
w
P , d

)
.

This theorem does not take into account the overheads as-
sociated with task creation. So, we want to refine the model
and generalize Brent’s theorem. To that end, we consider that
if a node creates parallel tasks then an extra computation
cost τneeds to be paid for. In other words, any node that has
an out-degree two or greater now has weight 1 + τ instead
of just 1. We then define the total work as the sum of the
weights of all the nodes in this revised computation graph.
Similarly, we define the total depth as the maximum weight
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of a path from the source to the sink in the revised graph. A
first attempt at generalizing Brendt’s theorem is as follows.

Theorem 2.2 (Naive generalization of Brent’s theorem)
Let G be a computation DAG withW total work and d raw
depth. Any greedy scheduler can execute these computations
in time O(WP + (1 + τ)d) on P processors.

Proof Consider layers like in Brent’s theorem, with the dif-
ference that at every layer there might be tasks of weight
1 and tasks of weight 1 + τ . Observe that there is still ex-
actly d levels. Hereafter, let r be a shorthand for 1 + τ . Let
Wi denote the sum of the weights of the nodes at level i.
A greedy scheduler executes this work in a time less than
r
⌈Wi

rP

⌉
. Thus, the total time execution is bounded by:

d∑
i=1

r

⌈
Wi

rP

⌉
≤

d∑
i=1

r(
Wi

rP
+ 1) ≤ W

P
+ rd �

In the above theorem, Brent’s original theorem general-
izes with respect to total work, in the sense that the ratio
w
P gets replaced by WP , however it does not generalize as
well with respect to the depth, because the component d is
replaced by (1 + τ)d and not D. For computations that in-
volve task creation all along their critical path, D can be
equal to (1 + τ)d, so in this case the naive generalization of
Brent’s theorem already gives a tight bound. However, there
are computations for which (1+τ)d can be significantly big-
ger than the total depthD. Typically,D might be of the form
d + nτ for some n. In this case, the bound obtained is ex-
tremely loose. We remedy to this situation by establishing a
tight bound that nicely generalizes the statement of Brent’s
theorem.

Theorem 2.3 (Generalized version of Brent’s theorem)
LetG be a computation DAG withW total work andD total
depth. Any greedy scheduler can execute these computations
in time O(WP +D) on P processors.

Proof The problem shares similarities with the classic prob-
lem known as P |prec|Cmax in scheduling theory. This prob-
lem consists in scheduling tasks on P machines in a way that
minimize the total makespan, while satisfying a set of prece-
dence constraints Our problem, however, differs in a signifi-
cant way: we do not want to establish a bound for a particular
scheduler, but instead we want to establish a result for a en-
tire class of scheduler, covering all the schedulers that are
greedy (they never wait if there is work to do) and on-line
(they are not aware of the existence of a task until is be-
comes available). Our proof reuses a particular aspect of the
proof of 2-optimality of the greedy “earliest-job-first” ap-
proximation algorithm for the problem P |prec|Cmax. More
specifically, we build a particular sequence of tasks itera-
tively, starting from the last one. The structure of our proof
is, however, significantly different. In particular, the invari-
ants are more complex because we are making fewer as-
sumptions about the scheduler’s policy.

Consider a scheduling of tasks by a greedy scheduler. Our
goal is to prove a bound on the total execution time T . Let the
tasks be labelled using integers from 1 to M . The duration
of task i is written wi, and the time at which it starts is
written ti. We call ∆i the time interval [ti, ti + wi] during
which the task i is executed. To capture the dependencies,
we consider a set of precedence constraints: i ≺ j indicates
that the task j depends directly on indirectly on the result of
the task i. For the sake of the proof, we assume that the set of
tasks includes a task of duration zero such that all other tasks
depend on it. This task is scheduled at time 0. Similarly, we
assume the existence of a task of duration zero such that this
task depend on all other tasks. This task is scheduled at time
T . Hereafter, let π denote a sequence of tasks of the form
π1 ≺ π2 ≺ . . . ≺ πN . We write |π| the number of tasks in
the path π and ||π|| the sum of the duration of the tasks in
that path, that is, the value

∑N
n=1 πn. By definition of work

and depth, we have W =
∑M

1=i wi and D = maxπ ||π||.
Our goal is to show T ≤ WP +D.
• Let ([uk, vk])k∈[1,K−1] be the set of nonempty time in-

tervals during which not all processors are working. We de-
fine uK = vK = T . The total time T decomposes into the
total time during which all processors are busy, call it Tfull,
and the total time during which not all processors are busy,
call it Tpartial. We thus have T = Tfull + Tpartial. Techni-
cally, we have Tfull =

∑K−1
k=1 (uk+1 − vk) and Tpartial =∑K

k=1 (vk − uk). During the time when processors are fully
busy, they execute an amount of work equal to P ·Tfull .This
amount cannot exceed the total amount of work available,
which isW . So, we have Tfull ≤ W/P . In order to estab-
lish that T ≤ W/P + D, it therefore remains to show that
Tpartial ≤ D.
• Observation A: If a task i starts after the time vk, for

some k, then there exists a task j that executes at time vk and
such that i depends on j. Formally,

∀ik. ti > vk ⇒ ∃j. j ≺ i ∧ vk ∈ ∆j

To prove this, consider the set of tasks that i depends on, and
add i itself to that set. Select from this set the subset of tasks
that starts after vk. Call j′ the task among these that has the
minimal starting time (i.e. tj′ minimal). Now, consider all
the tasks that j′ depends on. Due to the minimality of tj′ ,
all those tasks must start before vk. If none of those task
is executing at the time vk, then it means that the task j′

could have been scheduled to start just before vk. Indeed,
there was a free scheduler at this point because the interval
[uk, vk] corresponds to a nonempty period of time where not
all processors are busy. So, there must exists at least one task
j that executes at time vk and such that j ≺ j′. We therefore
have j ≺ i and vk ∈ ∆j .
• Observation B: If we have a task i1 that executes at

time vk then we can find a sequence of tasks iN ≺ . . . ≺ i1
such that these tasks entirely cover the interval [uk, vk].
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Formally,

∀i1k. vk ∈ ∆i1 ⇒ ∃i2 . . . iN .
iN ≺ . . . ≺ i1
uk ∈ ∆iN

vk − uk =
∑N
n=1 ||∆in ∩ [uk, vk]||

Above, the expression ||∆in ∩ [uk, vk]|| corresponds to the
aomunt of time that the task i spent being executed inside
the time interval [uk, vk]. We construct the sequence (in)
iteratively in such a way that the tasks are adjacents to
each others. Technically, we have tin = tin+1

+ win+1
for

n ∈ [1, N − 1]. Initially, we only have i1. At a given point
in the construction, the sequence built up to index n. There
are two cases. If uk ∈ ∆in , then we are done (N = n).
Otherwise, the task in must depend on a task that ends at
time tin If this was not the case then the task in could have
been scheduled earlier. Indeed, we have uk < tin ≤ vk so
there is at least one processor available just before time tin ).
We call in+1 the task that preceeds in, and we then repeat
the process. Since there are only a finite number of tasks, the
process must end after finitely many iterations. Note that we
must reach the date uk at some point, because the last task
that can be considered is the task that is scheduled at time 0,
which is earlier than uk.
•Main induction: we construct a sequence of tasks that

belong to a same precedence path and that covers all the
periods of time where not all processors are busy. To build
this sequence, we exploit observation A to traverse periods
of full activity and exploit observation B to cover periods of
partial activity. More precisely, we prove by induction that,
for any L ∈ [1,K], there exists a path π such that the task
at the head of the path π is running at time vL and such that
the sum of the execution time of the tasks involved in the
path π, counting only the execution occuring in the interval
[uL, uK ], is greater than the sum of the width of the intervals
of the form [uk, vk] for k ≥ L. Formally,

∀L. ∃π. uL ∈ ∆hd(π) ∧
L∑
k=1

(vk−uk) ≤
|π|∑
n=1

||∆πn∩[uL, uK ]||

The base case is L = K. In this case, we define π as
the singleton path made of the tasks that depends on all the
others. This task is executed at time uK (which is equal to
T ), so we have uK ∈ ∆hd(π). Since vK = uK , the two sums
involved are both equal to zero, so we are done for the base
case.

Now, assume the result true for L, and let us establish
it for L + 1. By induction hypothesis, there exists a path π
such that uL ∈ ∆i, where i denotes the head of the path π,
and such that

∑L
k=1 (vk−uk) ≤

∑|π|
n=1 ||∆πn

∩ [uL, uK ]||.
The first step consists in extending the path π into a path
π′ whose head task, call it j1, is executing at time vL+1.
There are two cases, if ti ≤ vL+1, then we can simply
define π′ = π and we have j1 = i. Otherwise, ti > vL+1,

v ::= x | n | (v, v) | inl v | inr v | fun f.x.e

e ::= v | let x = e1 in e2 | (v v) | fst v | snd v |
case v of {inl x.e, inr x.e} | (e, e) | (|e, e|)

Figure 2. Abstract syntax of the source language

so we can apply observation A to get a task j1 such that
j1 ≺ i and vL+1 ∈ ∆j1 , and we then define π′ = j1 · π.
Now, we apply observation B, which asserts the existence
of a sequence of tasks jN ≺ . . . ≺ j2 ≺ j1 such that
uK+1 ∈ ∆jN and vL+1−uL+1 =

∑N
n=1 ||∆jn ∩ [uk, vk]||.

The path π′′ defined as jN · . . . · j2 · j1 · π′ covers the
time interval [uL+1, uK ]. This path can be used to conclude.
First, the head of the path π′′ is the task jN , which satisfies
uK+1 ∈ ∆jN as required. Second, the required inequality is
as shown next.∑|π′′|

n=1 ||∆π′′
n
∩ [uL+1, uK ]||

≥
∑N
n=1 ||∆jn ∩ [uL+1, uL+1]||

+
∑|π|
n=1 ||∆πn

∩ [uL, uK ]||
≥ (vL+1 − uL+1) +

∑L
k=1 (vk − uk)

≥
∑L+1
k=1 (vk − uk)

The case where j1 = i is a bit delicate. This case occurs
when the execution of task i intersects with several periods
of time during which not all processors are working. In
this case, we also have π′′N = i, so a part of the task i
appears as ||∆π′′

N
∩ [uL+1, uK ]|| and another part appears

as ||∆j1 ∩ [uL+1, uL+1]||.
• Conclusion: We construct a path π by applying the

result from the main induction with L = 1. We can then
establish the inequality Tpartial ≤ D as follows.

Tpartial =
∑K
k=1 (vk − uk) ≤

∑|π|
n=1 ||∆πn ∩ [u1, uK ]||

≤
∑|π|
n=1 ∆πn

≤ ||π|| ≤ maxπ′ ||π′|| = D

�

3. Source language
To give an accurate account of cost of task creation, and
to specify precisely our compilation strategy, we consider
a source language in the style of λ-calculus and present a
dynamic cost semantics for it. The semantics and the costs
are parameterized by τ and φ that represent the cost of
creating a parallel task and the cost of consulting an external
oracle.

Syntax The source language includes recursive functions,
pairs, sum types, and parallel tuples. Parallel tuples enable
expressing computations that can be performed in parallel,
similar to the fork-join or nested data parallel computations.
Note that we only consider parallel tuples of arity two. Par-
allel tuples of higher arity can be easily represented using
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(value)

v ⇓α v, (1, 1), (1, 1)

(let)
e1 ⇓α v1, (w1, d1), (W1,D1) e2[v1/x] ⇓α v, (w2, d2), (W2,D2)

(let x = e1 in e2) ⇓α v, (w1 + w2 + 1, d1 + d2 + 1), (W1 +W2 + 1,D1 +D2 + 1)

(app)
(v1 = fun f.x.e) e[v2/x, v1/f ] ⇓α v, (w, d), (W,D)

(v1 v2) ⇓α v, (w + 1, d+ 1), (W + 1,D + 1)

(first)

(fst (v1, v2)) ⇓α v1, (1, 1), (1, 1)

(second)

(snd (v1, v2)) ⇓α v2, (1, 1), (1, 1)

(case-left)
e1[v1/x] ⇓α v, (w, d), (W,D)

case (inl v1) of {inl x1.e1, inr x2.e2} ⇓α v, (w + 1, d+ 1), (W + 1,D + 1)

(case-right)
e2[v2/x] ⇓α v, (w, d), (W,D)

case (inr v2) of {inl x1.e1, inr x2.e2} ⇓α v, (w + 1, d+ 1), (W + 1,D + 1)

(tuple)
e1 ⇓α v1, (w1, d1), (W1,D1) e2 ⇓α v2, (w2, d2), (W2,D2)

(e1, e2) ⇓α (v1, v2) , (w1 + w2 + 1, d1 + d2 + 1), (W1 +W2 + 1,D1 +D2 + 1)

(ptuple-seq)
e1 ⇓seq v1, (w1, d1), (W1,D1) e2 ⇓seq v2, (w2, d2), (W2,D2)

(|e1, e2|) ⇓seq (v1, v2) , (w1 + w2 + 1, d1 + d2 + 1), (W1 +W2 + 1,D1 +D2 + 1)

(ptuple-par)
e1 ⇓par v1, (w1, d1), (W1,D1) e2 ⇓par v2, (w2, d2), (W2,D2)

(|e1, e2|) ⇓par (v1, v2) , (w1 + w2 + 1, max (d1, d2) + 1), (W1 +W2 + 1 + τ, max (D1,D2) + 1 + τ)

(ptuple-orc-parallelize)
w1 > κ ∧ w2 > κ e1 ⇓orc v1, (w1, d1), (W1,D1) e2 ⇓orc v2, (w2, d2), (W2,D2)

(|e1, e2|) ⇓orc (v1, v2) , (w1 + w2 + 1, max (d1, d2) + 1), (W1 +W2 + 1 + τ + φ, max (D1,D2) + 1 + τ + φ)

(ptuple-orc-sequentialize)
w1 ≤ κ ∨ w2 ≤ κ

e1 ⇓(ifw1≤κ then seq else orc) v1, (w1, d1), (W1,D1) e2 ⇓(ifw2≤κ then seq else orc) v2, (w2, d2), (W2,D2)

(|e1, e2|) ⇓orc (v1, v2) , (w1 + w2 + 1, d1 + d2 + 1), (W1 +W2 + 1 + φ,D1 +D2 + 1 + φ)

Figure 3. Dynamic cost semantics

those of arity two. (We leave to future work the investigation
of an optimized treatment of n-ary parallel tuples.)

To streamline the presentation, we assume programs to
be in A-normal form, with the exception of pairs and paral-
lel pairs, which we treat symmetrically because our compila-
tion strategy involves translating parallel pairs to sequential
pairs. Figure 2 illustrates the abstract syntax of the source
language. We note that, even though the presentation is only
concerned with a purely-functional language, it is easy to

add references; in this case, however, they contribute no ad-
ditional insight and thus are omitted for clarity.

Dynamic cost semantics We define a dynamic semantics
where parallel tuples are evaluated selectively either in paral-
lel or sequentially, as determined by their relative size com-
pared with some constant κ. To model this behavior, we
present an evaluation semantics that is parameterized by an
identifier that determines the mode of execution, i.e., sequen-
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tial or not. For the purpose of comparison, we also define a
(fully) parallel semantics where parallel tuples are always
evaluated in parallel regardless of their size. The mode of an
evaluation is one of: sequential (written seq), parallel (writ-
ten par), or oracle (written orc). We let α range over modes.
In summary, we have:

α ::= seq | par | orc.

In addition to evaluating expression, the dynamic seman-
tics also returns cost measures including raw work and raw
depth written by w and d (and variants), and total work and
total depth, written by W and D (and variants). Dynamic
semantics is presented in the style of a natural (big-step) se-
mantics and consists of evaluation judgments of the form

e ⇓α v, (w, d), (W,D).

This judgment states that evaluating expression e in mode α
yields value v resulting in raw-work of w and raw-depth of d
and total work ofW and total depth of D.

In the sequential mode, parallel tuples are treated exactly
like sequential tuples: evaluating a parallel tuple thus simply
contributes 1 to the total work and depth. The depth is in
this mode computed as one plus the sum of the depths of the
two branches. In the parallel mode, the evaluation of parallel
tuples induce an additional constant cost τ . The depth is in
this mode computed as one plus the maximum of the depths
of the two branches. For the oracle mode, there are two
cases. If the parallel tuple is scheduled sequentially, then its
cost is only 1 and the depth is computed as the sum of the
depth of the branches. If the parallel tuple is scheduled in
parallel, then an extra cost τ is involved and the depth is
computed as the maximum of the depth of the two branches.

In the oracle mode, the scheduling of a parallel tuple
depends on the amount of raw work involved in the two
branches. If the raw work of each of the two both branches
is more than κ, then the tuple is executed in parallel and
both branches are executed according to the oracle mode.
Otherwise, if the raw work of either of the two branches is
less than κ, then the tuple is executed sequentially. The mode
in which each branch is executed then depends on the work
involved in the branch. If a branch contains more than κ units
of raw work, then it is executed in oracle mode, otherwise it
is scheduled in sequential mode. This switching to sequential
mode on small tasks is needed for ensuring that the oracle is
not called too often during the execution of a program.

For all expressions other than parallel tuples, the (raw/total)
work and the (raw/total) depth are computed by summing up
those of the premises and adding one unit. The complete in-
ductive definition of the dynamic cost semantics judgment
e ⇓α v, (w, d), (W,D) appears in Figure 3. Note that the
rules concerning the oracle mode involve a cost φ that will
be used to take into account the cost of invoking the oracle.
For the time being, consider that φ is equal to zero.

4. Analysis
Based on our source language and its cost semantics, we start
by showing bounds on the raw/total work and the raw/total
depth of computations in different execution modes. For the
time being the assumption of a ideal oracle, that is, an ora-
cle that always makes perfectly-accurate predictions without
any overhead (i.e., φ = 0). Theorem 4.1 shows the rela-
tionships between raw-work/raw-depth and total-work/total-
depth for the tree possible modes.

Theorem 4.1 (Work and depth) Consider an expression e
such that e ⇓α v, (w, d), (W,D). Assume φ = 0. The
following tight bounds can be obtained for total work and
total depth, on a machine with P processors where the cost
of creating parallel tasks is τ .

α Bound on total work Bound on total depth
seq W = w D = d = w
par W ≤ (1 + τ

2 )w D ≤ (1 + τ) d
orc W ≤ (1 + τ

κ+1 )w D ≤ (1 + max (τ, κ)) d

Proof The result about the sequential mode is straightfor-
ward by inspection of the semantics of the source language
(Figure 3). The other results can be obtained by specializ-
ing the general bounds that we present later in this section
(Theorem 4.2 and Theorem 4.3). In what follows, we give
examples that attain the bounds for the parallel and the ora-
cle modes.
• For the work in parallel mode, consider an expression

consisting only of parallel tuples with n leaves, and thus
n−1 “internal nodes”. The raw workw is equal to n+(n−1)
while the total workW is equal to n+ (n− 1)(1 + τ). The
ratioW/w can be rewritten as 1+ nτ

2n+1 , which tends to 1+ τ
2

as n grows.
• For the depth in parallel mode, we can use the same

example. Each parallel tuple accounts for 1 is the raw depth
but for 1 + τ in the total depth. So, the total depth can be as
much as 1 + τ times greater than the raw depth.
• For the work in oracle mode, consider an expression

with n nested parallel tuples, where tuples are always nested
in the right branch of their parent tuple. The tuples are built
on top of expressions that involve just over κ units of work.
In the oracle semantics, all the tuples are executed in parallel.
The raw work w is equal to n+ (n+ 1)κ, and the total work
W is equal to n(1 + τ) + (n+ 1)κ. The ratioW/w is equal
to 1 + nτ

n(κ+1)+κ , which tends to 1 + τ
κ+1 when n gets large.

• For the depth in oracle mode, in the case τ ≥ κ, we use
the same example as for the work. The raw depth is n + 1
and the total depth is n(1 + τ) + κ. The ratio D/d is equal
to 1 + nτ+κ−1

n+1 , which approaches 1 + τ as n grows.
• For the depth in oracle mode, in the case κ ≥ τ ,

we change the example slightly so that now the tuples are
built on leaves that involve just less than κ units of work.
In the oracle semantics, all the tuples thus get executed
sequentially. In this case the raw depth is n+ κ and the total
depth is equal to the total work, which is n+ (n+ 1)κ. The
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ratio D/d can be expressed as 1 + nκ
n+κ , which approaches

1 + κ as n grows. �

The first important result coming out of the above the-
orem is that scheduling costs really matter. the total work
and total depth can be as much as τ time larger than the
raw depth and raw work. For example, consider a program
that involves only parallel tuples, in a perfectly balanced tree
with n leaves. This program involves about 2n raw work, so
a sequential run requires 2n units of time. A parallel run of
this program can take time 2nτ

P , which is only τ
P faster than

the sequential execution. In fact, the parallel run can even be
slower if the relative cost of creating a parallel task is greater
than the number of processors.

The second important result concerns the oracle mode.
The theorem suggests that the execution of a computation
with an ideal oracle can be as much as κ

τ times faster than
that of the parallel mode. This comes at a cost of increasing
the depth by a factor of κτ . In general, it can be very harmful
to increase the depth. However, for programs that exhibit a
lot of parallel slackness, this is not an issue. Indeed, when
w
P is a lot greater than d, we can safely multiply the depth
and thereby reduce the scheduling overheads involved. In
other words, if parallel slackness is high and κ is not too
large, then τd remains small in front of w

P , so the depth is
not a limitation, however τ

κ
w
P becomes much smaller than

τ wP , meaning that the scheduling overheads are dramatically
reduced.

Realistic oracles Realizing a perfectly-accurate oracle in
practice is impossible. In fact, even predicting execution
time with 5 percent accuracy can be tremendously hard. So,
we generalize our analysis by allowing by considering an
oracle that is allowed to make error by up to a multiplicative
factor µ (for example a factor 3). This means that a task
that executes sequentially in time w should be predicted by
the oracle to take a time between w

3 and 3w. We moreover
allow the oracle to take some constant time to provide its
answer, and we call this constant φ. In what follows, we
show that even with such a realistic oracle we are able to
reduce the overheads, at leasts for a relatively broad range
of programs that we call regular. We start with studying the
depth and give a result that does not depend on regularity. In
the particular case where κ to be large in front of τ and φ,
this result implies that the depth is no larger than µκ times
the raw depth. (Recall that with the ideal oracle this factor
was κ.)

Theorem 4.2 (Depth with realistic oracle)

e ⇓orc v, (w, d), (W,D) ⇒ D ≤ (1+max (τ, µκ)+φ) d

Proof We write ρ as a shorthand for 1 + max (τ, µκ) + φ.
So, the goal is to prove D ≤ ρd. The proof is by induction
on the derivation of the hypothesis.
• For a rule with zero premise, we have D = d = 1.

Because ρ ≥ 1, it follows that D ≤ ρd.

• For a rule with one premise, we know by induction
hypothesis that D ≤ ρd. Using again the fact that ρ ≥ 1,
we can deduce the inequality D + 1 ≤ ρ(d+ 1).
• For a rule with two premises, we can similarly establish

the conclusion D1 + D2 + 1 ≤ ρ(d1 + d2 + 1) using the
induction hypotheses D1 ≤ ρd1 and D2 ≤ ρd2.
• Now, consider the case of a parallel tuple. First, assume

that the two branches of this tuple is predicted to be large. In
this case, the tuple is executed in parallel and the branches
are executed in oracle mode. We exploit the induction hy-
potheses D1 ≤ ρd1 and D2 ≤ ρd2 to conclude as follows:

D= max (D1,D2) + 1 + τ + φ
≤ max (ρd1, ρd2) + 1 + max (τ, µκ) + φ
≤ max (ρd1, ρd2) + ρ
≤ ρ (max (d1, d2) + 1)
≤ ρd

• Consider now the case where both branches are pre-
dicted to be small. In this case, the tuple is executed sequen-
tially. Because the oracle predicts the branches to be smaller
than κ, they must be actually smaller than µκ. So, we have
w1 ≤ µκ and w2 ≤ µκ. Moreover, both branches are exe-
cuted according to the sequential mode, so we haveD1 = w1

and D2 = w2. It follows that D1 ≤ µκ and D2 < µκ. Be-
low, we also exploit the fact that max (d1, d2) ≥ 1, which
comes from the fact that raw depth is at least one unit. We
conclude as follows:

D= D1 +D2 + 1 + φ
≤ µκ+ µκ+ 1 + φ
≤ (1 + µκ+ φ) ∗ 2
≤ (1 + max (τ, µκ) + φ) · (max (d1, d2) + 1)
≤ ρd

• It remains to consider the case where one branch is
predicted to be smaller than the cutoff while the other branch
is predicted to be larger than the cutoff. In this case again,
both branches are executed sequentially. Without loss of
generality, assume that the second branch is predicted to be
small. In this case, we have w2 ≤ µκ. This first branch is
thus executed according to the sequential mode, so we have
D2 = d2 = w2. It follows that D2 ≤ µκ. For the first
branch, which is executed according to the oracle mode, we
can exploit the induction hypothesis which is D1 ≤ ρd1. We
conclude as follows:

D= D1 +D2 + 1 + φ
≤ ρd1 + µκ+ 1 + φ
≤ ρd1 + (1 + max (τ, µκ) + φ)
≤ ρ (d1 + 1)
≤ ρ (max (d1, d2) + 1)
≤ ρd

�

This ends our analysis of the depth. Now, let us look at
the work. The fact that every call to the oracle can induce a
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cost φ can lead the work to be multiplied by φ. For example,
consider a program made of a complete tree built using n−1
sequential tuples, and where the n leaves are parallel tuples
made of atomic values. If n is the number of parallel tuples,
the raw work is equal to (n−1)+n+2n, and the total work
is (n− 1) + nφ+ 2n. So, the ratioW/w tends to φ/4 when
n gets larged. This means that a program executed according
to the oracle semantics can get as much as φ/4 times slower
than its sequential counterpart.

Fortunately, most programs do not exhibit this patholog-
ical behavior. However, to prove a better bound we need
to make further assumptions about the structure of the pro-
gram. It turns out that a sufficient condition for establish-
ing an interesting bound is to ensure that the oracle is never
called on too small tasks. This property is hard to capture
in a hardware-independent way. However, we can devise a
sufficient condition, called regularity, which is hardware-
independent and ensures the desired property. Intuitively, a
program is γ-regular if the ratio between the work involved
in a recursive call and the work involved in the next recur-
sive call does not exceed γ. Divide-and-conquer algorithm
typically satisfy the regularity condition. We next formalize
the definition of regularity.

Definition 4.1 (Domination of a parallel branch) A branch
e of a parallel tuple is said to be dominated by the branch
ei of another parallel tuple (|e1, e2|) if the expression e is
involved in the execution of the branch ei.

Definition 4.2 (Regularity of a parallel program) A pro-
gram is said to be γ-regular if, for any parallel branch in-
volving, say, w units of raw work, either w is very large
compared with κ/(µγ) or this branch is dominated by an-
other parallel branch that involves less than γw units of
work.

The condition “w is very large compared with κ/(µγ)”
is used to handle the outermost parallel tuples, which are
not dominated by any other tuple. Note that the regularity
of a program is always greater than 2. Indeed, if one of the
branch of a parallel tuple is more than half of the size of
the entire tuple, then the other branch must be smaller than
half of that size. On the one hand, algorithms that divide
their work in equal parts are γ-regularity with γ very close
to 2. On the other hand, ill-balanced programs can have a
very high degree of regularity. Note that every program is
∞-regular.

For example, consider a program that traverses a com-
plete binary tree in linear time. A call on a tree of size n
has raw work nc, for some constant c. If the tree is not a
leaf, it has size at least 3. The next recursive call has raw
work

⌊
n−1
2

⌋
c, The ratio between those two values is equal

n/
⌊
n−1
2

⌋
is always less than 3 when n ≥ 3. So, the algo-

rithm is 3-regular.
The following lemma explains how the regularity as-

sumption can be exploited to ensure that the oracle is never

invoked on tasks of size less than κ/(µγ). This suggests that,
for the purpose of amortizing well the costs of the oracle, a
smaller regularity is better.

Lemma 4.1 (Oracle invocation in regular programs)
Consider a γ-regular program being executed according to
oracle semantics. If the oracle is invoked during the execu-
tion of the program on an expression e, then e involves at
least κ/(µγ) units of work.

Proof Assume the expression involves w units of work. By
the regularity assumption, either w is very large compared
with κ/(µγ), in which case the conclusion holds, or it is
dominated by a branch that involves that involves w′ units of
work, with w′ ≤ γw. Because the oracle is being invoked, it
means that the evaluation mode is orc. Thus, the dominating
branch must have been predicted to be bigger than κ for not
being sequentialize. So the dominating branch must be at
least of size κ/γ. Combining the inequality γw ≥ w′ and
w′ ≥ κ/µ, we get w ≥ κ/(µγ). �

Theorem 4.3 (Work with realistic oracle, with regularity)
Assume e ⇓orc v, (w, d), (W,D) where e is γ-regular.

W ≤ (1 +
τ

κ/µ + 1
+

φ

κ/(µγ) + 1
)w

Proof Define κ′ as a shorthand for κ/µ and κ′′ as a short-
hand for κ/(µγ). Note that, because γ ≥ 1, we have κ′′ ≤
κ′. Let x+ be defined as the value x when x is nonnegative
and as zero otherwise. We prove by induction that:

W ≤ w + τ
⌊
(w−κ)+
κ′+1

⌋
+ φ

⌊
(w−κ′′)

+

κ′′+1

⌋
This is indeed a strengthened result because we have:

τ

⌊
(w−κ′)

+

κ′+1

⌋
≤ τ w

κ′+1 ≤
τ

κ/µ+1 w

and φ

⌊
(w−κ′′)

+

κ′′+1

⌋
≤ φ w

κ′′+1 ≤
φ

κ/(µγ) + 1 w

The proof is conducted by induction on the derivation of
the reduction hypothesis.
• For a rule with zero premise describing an atomic oper-

ation, we haveW = w = 1, so the conclusion is satisfied.
• For a rule with a single premise, the induction hypoth-

esis is:

W ≤ w + τ

⌊
(w−κ′)

+

κ′+1

⌋
+ φ

⌊
(w−κ′′)

+

κ′′+1

⌋
So, we can easily derive the conclusion:

W + 1 ≤ (w + 1) + τ

⌊
((w+1)−κ′)

+

κ′+1

⌋
+ φ

⌊
((w+1)−κ′′)

+

κ′′+1

⌋
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• For a rule with two premises, we exploit the mathemat-
ical inequality

⌊
n
q

⌋
+
⌊
m
q

⌋
≤
⌊
n+m
q

⌋
. We have:

W = W1 +W2 + 1

≤ w1 + τ

⌊
(w1−κ′)

+

κ′+1

⌋
+ φ

⌊
(w1−κ′′)

+

κ′′+1

⌋
+ w2 + τ

⌊
(w2−κ′)

+

κ′+1

⌋
+ φ

⌊
(w2−κ′′)

+

κ′′+1

⌋
+ 1

≤ w + τ

⌊
(w1−κ′)

+
+(w2−κ′)

+

κ′+1

⌋
+ φ

⌊
(w1−κ′′)

+
+(w2−κ′′)

+

κ′′+1

⌋
To conclude, we need to establish the following two mathe-
matical inequality:

(w1 − κ′)+ + (w2 − κ′)+ ≤ ((w1 + w2 + 1)− κ′)+

(w1 − κ′′)+ + (w2 − κ′′)+ ≤ ((w1 + w2 + 1)− κ′′)+

The two equalities can be proved in a similar way. Let us
establish the first one. There are four cases to consider. First,
if both w1 and w2 are less than κ′, then the right-hand side
is zero, so we are done. Second, if both w1 and w2 are
greater than κ′, then all the expressions are nonnegative, and
we are left to check the inequality w1 − κ′ + w2 − κ′ ≤
w1 + w2 + 1 − κ′. Third, if w1 is greater than κ′ and w2 is
smaller than κ′, then the inequality becomes (w1 − κ′)+ ≤
((w1 − κ′) + (w2 + 1))

+, which is clearly true. The case
w1 ≥ κ′ and w2 < κ′ is symmetrical. This concludes the
proof.
• Consider now the case of a parallel tuple where both

branches are predicted to involve more than κ units of work.
This implies w1 > κ′ and w2 > κ′. In this case, a parallel
task is created. Note that, because κ′′ ≤ κ′, we also have
w1 > κ′′ and w2 > κ′′. So, all the values involved in the fol-
lowing computations are nonnegative. Using the induction
hypotheses, we have:

W = W1 +W2 + 1 + τ + φ

≤ w1 + τ
⌊
w1−κ′

κ′+1

⌋
+ φ

⌊
w1−κ′′

κ′′+1

⌋
+ w2 + τ

⌊
w2−κ′

κ′+1

⌋
+ φ

⌊
w2−κ′′

κ′′+1

⌋
+ 1 + τ + φ

≤ (w1 + w2 + 1) + τ(
⌊
w1−κ′

κ′+1

⌋
+
⌊
w2−κ′

κ′+1

⌋
+ 1)

+ φ(
⌊
w1−κ′′

κ′′+1

⌋
+
⌊
w2−κ′′

κ′′+1

⌋
+ 1)

≤ w + τ
⌊
(w1−κ′)+(w2−κ′)+(κ′+1)

κ′+1

⌋
+ φ

⌊
(w1−κ′′)+(w2−κ′′)+(κ′′+1)

κ′′+1

⌋
≤ w + τ

⌊
(w1+w2+1)−κ′

κ′+1

⌋
+ φ

⌊
(w1+w2+1)−κ′′

κ′′+1

⌋
≤ w + τ

⌊
w−κ′

κ′+1

⌋
+ φ

⌊
w−κ′′

κ′′+1

⌋
• Assume now that the two branches are predicted to be

less than the cutoff. This implies w1 ≤ κ′ and w2 ≤ κ′.
Both these tasks are executed sequentially, soW1 = w1 and
W2 = w2. By lemma Lemma 4.1, the regularity assumption

ensures that we have w1 ≥ κ′′ and w2 ≥ κ′′. Those
inequalities ensure that we are able to pay for the cost of
calling the oracle, that is, the cost φ. Indeed, since we have
w1+w2+1−κ′′ ≥ κ′′+1, we know that

⌊
w1+w2+1−κ′′

κ′′+1

⌋
≥

1. Therefore:

W = W1 +W2 + 1 + φ
≤ w1 + w2 + 1 + φ

≤ (w1 + w2 + 1) + φ
⌊
w1+w2+1−κ′′

κ′′+1

⌋
≤ w + τ

⌊
w−κ′

κ′+1

⌋
+ φ

⌊
w−κ′′

κ′′+1

⌋
• It remains to consider the case where one branch is

predicted to be bigger than the cutoff while the other is
predicted to be smaller than the cutoff. For example, assume
w1 > κ′ and w2 ≤ κ′. The parallel tuple is thus executed as
a sequential tuple. The first task is executed in oracle mode,
whereas the second task is executed in the sequential mode.
For the first task, we can invoke the induction hypothesis
W1 ≤ w1 + τ

⌊
w1−κ′

κ′+1

⌋
+ φ

⌊
w1−κ′′

κ′′+1

⌋
. For the second

task, which is executed sequentially, we have W2 = w2.
Moreover, the regularity hypothesis gives us w2 ≥ κ′′.
Hence, we have

⌊
w2+1
κ′′+1

⌋
≥ 1. We conclude as follows:

W = W1 +W2 + 1 + φ

≤ w1 + τ
⌊
w1−κ′

κ′+1

⌋
+ φ

⌊
w1−κ′′

κ′′+1

⌋
+ w2 + 1 + φ

≤ w1 + τ
⌊
w1−κ′

κ′+1

⌋
+ φ

⌊
w1−κ′′

κ′′+1

⌋
+ w2 + 1 + φ

⌊
w2+1
κ′+1

⌋
≤ w + τ

⌊
w1+w2+1−κ′

κ′+1

⌋
+ φ

⌊
w1+w2+1−κ′′

κ′′+1

⌋
≤ w + τ

⌊
w−κ′

κ′+1

⌋
+ φ

⌊
w−κ′′

κ′′+1

⌋
�

Observe that the above proof does not exploit the regular-
ity assumption directly but only through the application of
Lemma 4.1. In fact, the proof treats the value κ/(µγ), called
κ′′ in the proof, as an abstract value with the only assump-
tion that it is smaller than κ/µ. So, even though we have
been using regularity as a sufficient condition for ensuring
that the oracle does not get invoked on small expressions,
there might be other sufficient conditions that could be used.
For example, if we observe that the oracle never gets called
in practice on tasks that take more than a time t to execute
(note that if the oracle satisfies its specification, we should
have t ≥ κ/(µγ)), then we can replace the factor φ

κ/(µγ) + 1

from the statement of Theorem 4.3 with the smaller factor
φ

t + 1 .
Using these bounds on work and depth, we bound the

time for executing a γ-regular parallel program with a re-
alistic oracle (Theorem 4.4). This bound relies directly on
our generalization of Brent’s theorem, which as the original
theorem assumes a greedy scheduler that can perform load
balancing without any overheads; this is of course unrealistic
but not too far away from it as it turns out (Section 5).
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Theorem 4.4 (Execution time with realistic oracle)
Assume an oracle that costs φ and makes error by a factor
not exceeding µ. Then, the execution time of a parallel γ-
regular program on a machine with P processors under the
oracle semantics with a greedy scheduler is(

1 + τ
κ/µ+1 + φ

κ/(µγ)+ 1

)
w
P + (1 + max (τ, κµ) + φ) d

Proof By the generalized version of Brent’s theorem (The-
orem 2.3), using the bounds provided by Theorem 4.3 and
Theorem 4.2. �

Choosing a value for the cutoff Assume that κ is relatively
large, in the sense that κ/(µγ)� 1 and κ� τ and κ� φ.
Then, we can rewrite the bound of the theorem in a simpler
way: (

1 +
µ(τ + γφ)

κ

)
w

P
+ κµd

It now appears clearly that a small value for κ increases
the total work whereas a large value for κ increases the
total depth. We are thus interested in computing the optimal
value for κ, that is, the value of κ that minimizes the above
expression. To that end, we compute the derivative of this
expression with respect to κ. We get:

−µ(τ + γφ)

κ2
w

P
+ µd

The optimal value for κ is that for which the derivative is
zero. This happens for:

κ =
√
τ + γφ ·

√
w

Pd

This suggests that κ should never exceed a constant factor
times the square root of the degree of parallel slackness,
which is the ratio between w

P and d. (Intuitively, the parallel
slackness assumption asserts that this ratio is “large”, how-
ever to compute the optimal value for κ we quantify how
large it is.) The fact that κ cannot be taken very large, be-
cause it is bounded by a square root, is not necessarily a
problem. Indeed, we would be satisfied if the ratio µ(τ+γφ)

κ
was equal to any value less than 10 percent, because this
would ensure that the scheduling overheads do not exceed
10 percent of the total work.

We can now ask the question the other way around: what
is the minimal degree of parallel slackness that is required
for ensuring that the ratio µ(τ+γφ)

κ is less than r, for some r?
To that end, we need to satisfy both (µ(τ+γφ)r )2 < κ2 and
κ2 < (τ +γφ) wPd . Eliminating κ2, we obtain the inequality:

w

Pd
>

µ2(τ + γφ)

r2

This result implies that, in order to be able to bound the
scheduling overheads by r, parallel slackness needs to ex-
ceed a constant factor times 1/r2. For example, we can take

r = 10%. For program with small depth (e.g., logarithmic
depth), this result implies that the scheduling overheads do
not exceed a factor r of the raw work when w is larger than
r2∗µ2(τ+γφ)Pd. Thus, by taking κ = µ(τ+γφ)

r , we ensure
that, for any program with small depth, the scheduling over-
heads do not exceed a fraction r of the raw work whenever
the input data given to the program is large enough.

Improving the bound on total depth The bound that we
have established concerning the total depth of an expression
did not use the µ-regularity assumption. This assumption
alone does not suffice to obtain a better bound than that of
Theorem 4.2. However, if we make further assumptions we
may improve the bound.

Consider for example a simple recursive function, which
does not make calls to other parallel functions, and whose
body involves a single parallel tuple. Now, consider an exe-
cution path in the computation DAG of a run of this program.
All the parallel tuples at the beginning of this path contain a
lot of work so they are scheduled in parallel. Only the paral-
lel tuples near the end of the path may get sequentialized.

More precisely, as long as the raw work involved in a
parallel tuple exceeds γµκ units of raw work, we know by
the regularity assumption that both branches of this tuple
involve more than µκwork. So, the oracle must predict those
branches to involve more than κ work, leading the parallel
tuple to be executed in parallel. This observation implies that
we can never sequentialize more than γµκ units of work on
a given execution path.

In summary, for simple recursive functions containing
only one parallel tuple, we obtain the following bound on
the total depth:

D ≤ (1 + τ + φ) d + µγκ

This bound significantly improves that of Theorem 4.2, be-
cause κ no longer appears multiplicatively in front of the
raw depth, but only as an extra additive factor. We leave to
future work a formal investigation of the class of functions
for which the factor κ appears only additively and not mul-
tiplicatively in the total depth.

5. Oracle scheduling with complexity
functions

The original theorem of Brent as well as our generalization
assume a greedy scheduler that can find available work (par-
allel tasks to execute) immediately with no overhead. This is
unrealistic of course in a literal sense but many schedulers
can achieve similar bounds asymptotically for a reasonably
broad class of computations. For example, a work-stealing
scheduler can execute a fully-strict computations with W
work and D depth on P processors in O(W/P + D) ex-
pected time [10]. The class of fully-strict computations (i.e.,
series-parallel computations) include all fork-join programs,
nested-parallel computations, and specifically computations
with parallel tuples, our focus here.

11 2011/4/9



Since the oracle semantics that we have presented makes
no assumptions about a scheduler (it simply creates parallel
tasks), the created parallel tasks can be scheduled by using a
scheduler, e.g., a work-stealing scheduler, to execute them
on a parallel machine. The oracle semantics itself can be
realized by using a (φ, µ)-estimator that requires φ time to
estimate actual run-time of parallel tasks within a factor of
no more than µ. We refer to the combination of an estimator
with a parallel scheduler as an (φ, µ)-oracle-scheduler.

In the rest of this section, we describe how to obtain an
estimator suitable to be used as part of an oracle scheduler
by using asymptotic complexity annotations entered by the
user. We use an implementation of this estimator combined
with a work-stealing scheduler in our experiments (Sections
6 and 7).

Asymptotic complexity annotations. To obtain an effective
estimator as part of an oracle, we rely on asymptotic com-
plexity annotations decorating function calls. For the pur-
pose of this paper, we assume that these annotations are en-
tered by the programmer but in some cases they can also be
approximated by some other technique such as a static anal-
ysis (e.g., [24]). The basic idea behind our approach is to
combine these combine annotations with judiciously timed
runtime measurements to determine efficiently the constant
factors that are hidden by the complexity functions. Here,
we describe a compilation strategy for complexity annota-
tions to implement this idea.

To take advantage of complexity functions, we restrict
parallel tuples of the form (|e1, e2|), to that the expressions
are function applications, i.e., (|f1 v1, f2 v2|). Note that this
syntactic restriction does not reduce expressiveness because
a term e can always be replaced by a trivial application of
a “thunk”, a function that ignores its argument (typically
of type “unit”) and evaluates e, to a dummy argument. We
require user to provide complexity function for every defined
function and our compilation technique propagates these
annotations to the applications sites.

We write “fun f.x.eb [ec]” to denote a function “fun f.x.eb”
for which the complexity function for the body eb is de-
scribed by the expression ec. This expression ec, which may
refer to the argument x, should be an expression whose eval-
uation always terminates and produces an integer value. For
our bounds to apply, complexity expressions should require
constant time to evaluate.

To predict accurately actual execution times of a parallel
tuple, the oracle also needs to determine the constant fac-
tors hidden in the complexity functions. We estimate these
constants factors by collecting statistical information on ex-
ecution times of parallel tuples. Our compilation strategy in-
troduce the code for collecting this statistical information.
Since we are interested only in the sequential run-time of
parallel tasks, we only need to measure parallel tasks that
are sequentially executed; this both decreases the overhead
of measurements and increases their accuracy.

We use a “Constant-Estimator Data Structure” (CED)
to collect the statistical information needed to determine
the constant factors. The first pass of our compiler sim-
ply in associating a CED with every function. For exam-
ple, if the source code contains a function of the form
“fun f.x.eb [ec]”, then our compiler allocates a CED spe-
cific to that function definition. For example, if the variable r
refers to this particular CED, then the function becomes an-
notated with r. We then write it “fun f.x.eb [ec|r]”. The
second pass uses the CED to estimate the constant factors
hidden in the complexity function.

For the time being, we leave the implementation of the
constant-estimator datastructure (CED) abstract and only de-
scribe its interface, which comprises three functions:

type ced
val ced initialize : unit→ ced
val ced estimate : ced× int→ float
val ced measured : ced× int× float→ unit

The function ced initialize allocates a new CED. The func-
tion ced estimate takes a pointer to a CED and the value
returned by a call to the user-provided complexity function,
and then returns the amount of time predicted for the execu-
tion of the function. The function ced measured is used to
report to a CED the time actually measured by the execution
of the function. It takes as argument a pointer to the CED,
the value returned by the complexity function and the time
measured, and it then updates the data stored internally in
the CED.

In summary, to predict the execution time of a func-
tion call of the form “fun f.x.eb [ec|r]” on an argument v,
the oracle first executes the complexity expression ec[v/x],
which produces an integer value, call it m. The predic-
tion of the oracle is then obtained by evaluating the expres-
sion ced estimate(r,m). Typically, this would compute the
product of m by the current estimate of the constant factor
stored in r.

Compilation. We now describe how to translate a source
code with annotated functions of the form “fun f.x.eb [ec|r]”
into a standard piece of code by replacing these annotations
to operations on CEDs. This translation performs three tasks.
First, it packs every function with its CED and its complex-
ity function. Second, it adds code to make runtime decisions
about the scheduling of parallel tuples. Third, it instruments
the code so as to measure execution time for branches of
parallel tuples that are executed according to the sequential
semantics.

To describe the translation implementing oracle schedul-
ing, we write JvK the translation of a value v, and we write
JeKα the translation of the expression e according to the
semantics α, which can be either seq or orc. Observe that
the translation of values, contrary to the translation of ex-
pressions, does not depend on the mode. The compila-
tion scheme appears in Figure 4 and it is describe next.
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JxK ≡ x

J(v1, v2)K ≡ (Jv1K, Jv2K)

Jinl vK ≡ inl JvK
Jinr vK ≡ inr JvK
Jfun f.x.eb [ec|r]K ≡ (r, (fun .x.JecKseq), (fun f.x.JebKseq), (fun f.x.JebKorc))
JvKα ≡ JvK
Jv1 v2Kseq ≡ proj3 Jv1K Jv2K
Jv1 v2Korc ≡ proj4 Jv1K Jv2K
J(e1, e2)Kα ≡ (Je1Kα, Je2Kα)

J(|f1 v1, f2 v2|)Kseq ≡
(
proj3 Jf1K Jv1K, proj3 Jf2K Jv2K

)
J(|f1 v1, f2 v2|)Korc ≡

let (b1, k1) = Oracle(Jf1K, Jv1K) in
let (b2, k2) = Oracle(Jf2K, Jv2K) in
if (b1 && b2) then (|k1 (), k2 ()|) else (k1 (), k2 ())

Jlet x = e1 in e2Kα ≡ let x = Je1Kα in Je2Kα

Jfst vKα ≡ fst JvK
Jsnd vKα ≡ snd JvK
Jcase v of {inl x.e1, inr x.e2}Kα ≡ case JvK of {inl x.Je1Kα, inr x.Je2Kα}

Figure 4. Translation implementing oracle scheduling

Note that the figure makes use of triples, quadruples, pro-
jections, sequence, if-then-else statements, and unit value;
these constructions can all be easily defined in our core
programming language. An annotated function of the form
“fun f.x.eb [ec|r]” is translated to a quadruple of the form

(r, fun .x.ec, fun f.x.JebKseq, fun f.x.JebKorc)

which is made of the CED associated with the function,
the complexity function associated with the function, the
sequential-mode version of the function, and the oracle-
mode version of the function. An application of a function
f to an argument v is mapped to the application of either the
third or the fourth projection of f to the value v, depending
on whether the function should be executed in the sequen-
tial mode or in the oracle mode. A parallel tuple is turned
into a simple tuple if it is executed in the sequential mode,
otherwise it is scheduled using our oracle-based scheduling
policy. This policy is implemented with help of a function
called Oracle, which is described next. The translation of
other language constructs is entirely structural.

The meta-function Oracle, shown in Figure 5, describes
the template of the code generated for preparing the ex-
ecution of a parallel tuple. Oracle expects a (translated)
function f and its (translated) argument v, and it returns a
boolean b indicating whether the application of f to v is ex-
pected to take more or less time than the cutoff, and a contin-
uation k to execute this application. On the one hand, if the
application is predicted to take more time than the cutoff (in
which case b is true), then the continuation k corresponds
to the oracle-semantics version of the function f . On the
other hand, if the application is predicated to take less time

than the cutoff (in which case b is false), then the continu-
ation k corresponds to the sequential-semantics version of
the function f . Moreover, in the latter case, the time taken to
execute the application sequentially is measured. This time
measure is reported to the CED so that it can take it into
account for future predictions. The reporting is performed
by the auxiliary meta-function MeasuredRun, whose code
also appears in Figure 5. This completes the description of
our translation.

Observe that the translation introduces many quadruples
and applications of projection functions. However, in prac-
tice, the quadruples typically get inlined so most of the pro-
jections can be computed at compile time. Observe also that
the compilation scheme involves some code duplication, be-
cause every function is translated once for the sequential
mode and once for the oracle mode. In theory, the code
could grow exponentially when the code involves functions
defined inside the body of other functions. In practice, the
code grows only reasonably since functions are rarely deeply
nested. If code duplication was a problem, then one could
either use flattening to eliminate deep nesting of local func-
tions, or make functions take the parameter α as extra argu-
ment.

6. Implementation
In this section, we describe the implementation of our
scheduling technique in an actual language and system. In
our approach, source programs are written in our own di-
alect of the Caml language [25], which is a strict functional
language. Our Caml dialect corresponds to the core Caml
language extended with syntax for parallel pairs and com-
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Oracle (f, v) ≡
let r = proj1 f in

letm = proj2 f v in
let b = ced estimate(r,m) > κ in

let kseq () = proj3 f v in
let k′seq () = MeasuredRun(r,m, kseq) in
let korc () = proj4 f v in
let k = if b then korc else k

′
seq in

(b, k)

MeasuredRun (r,m, k) ≡
let t = get time () in
let v = k () in
let t′ = get time () in
ced measured (r,m, (t′ − t));
v

Figure 5. Auxiliary meta-functions used for compilation

type tree =

| Leaf of int

| Node of int * tree * tree

let size = function

| Leaf _ -> 1

| Size (s,_,_) -> s

let rec sum t = Oracle.complexity (size t);

match t with

| Leaf n -> n

| Node (size,t1,t2) ->

let (n1,n2) = (| sum t1, sum t2 |) in

n1 + n2

Figure 6. An example parallel program.

plexity annotations. Figure 6 shows a program implemented
in our Caml dialect. This recursive program traverse a binary
tree to compute the sum of the values stored in the leaves.

We use the Caml type checker to obtain a typed syntax
tree, on which we perform the oracle-scheduling translation
defined in Figure 4. We then produce code in the syntax of
Parallel ML (PML) [15], a parallel language close to Stan-
dard ML. The translation from Caml to PML is straight-
forward because the two languages are relatively similar.
We compile our source programs to x86-64 binaries us-
ing Manticore, which is the optimizing PML compiler. The
Manticore runtime system provides a parallel, generational
garbage collector that is crucial for scaling to more than four
processors, because functional programs, such as the ones
we consider, often involve heavy garbage-collection loads.
Further details on Manticore can be found elsewhere [14].
In the rest of this section, we explain how we compute the
constant factors, and we also give a high-level description

of the particular work-stealing scheduler on top of which we
are building the implementation of our oracle scheduler.

Runtime estimation of constants. The goal of the oracle
is to make relatively accurate execution time predictions at
little cost. Our approach to implementing the oracle consists
in evaluating a user-provided asymptotic complexity func-
tion, and then multiplying the result by an appropriate con-
stant factor. Every function has its own constant factor, and
the value for this constant factor is stored in the constant-
estimate data-structure (CED). In this section, we discuss the
pratical implementation of the evaluation of constant factors.

In order for the measurement of constant to be lightweight,
we simply compute average values of the constant. The con-
stant might evolve through time, for example if the current
program is sharing the machine with another program, a se-
ries of memory reads by the other program may slow down
the current program. For this reason, we do not just compute
the average across all history, but instead maintain a moving
average, that is, an average of the values gathered across a
certain number of runs.

Maintaining averages is not entirely straightforward. One
the one hand, storing data in a memory cell that is shared
by all processors is not satisfying because it would involve
some synchronization problems. On the other hand, using a
different memory cell for every processor is not satisfying ei-
ther, because it leads to slower updates of the constants when
they change. In particular, in the beginning of the execution
of a program it is important that all processors quickly share
a relatively good estimate of the constant factors. For these
reasons, we have opted for an approach that uses not only a
shared memory cell but also one data structure local to every
processor.

The shared memory cell associated with each CED con-
tains the estimated value for the constant that is read by all
the processors when they want to need to predict execution
times. The local data structures are used to accumulate statis-
tics on the value of the constant. Those statistics are reported
on a regular basis into the shared memory cell, by computing
a weighted mean between the value previously stored in the
shared memory cell and the value obtained out of the local
data structure. We use a special treatment for the initializa-
tion of the constants: for its first few measures, a processor
always report immediately its current average to the shared
memory cell. This ensures a fast propagation of the informa-
tion gathered from the first runs, so as to quickly improve
the accuracy of the predictions.

When implementing the oracle, we faced three technical
difficulties. First, we had to pay attention to the fact that the
memory cells allocated for the different processors are not
allocated next to each other. Otherwise, those cells would
fall in the same cache line, in which case writing in one
of these cells would make the other cells be removed from
caches, making subsequent reads more costly. Second, we
observed that the time measures typically yield a few out-
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liers. Those are typically due to the activity of the garbage
collector or of another program being scheduled by the op-
erating system on the same processor. Fortunately, we have
found the detection of these outliers to be relatively easy be-
cause the time measured are at least one or two orders of
magnitude greater than the cutoff value. Third, the default
system function that reports the time is only accurate by one
microsecond. This is good enough when the cutoff is greater
than 10 microseconds. However, if one were to aim for a
smaller cutoff, which could be useful for programs exhibit-
ing only a limited amount of parallelism, then it would be
required to use more accurate techniques, for example using
the specific processor instructions for counting the number
of processor cycles.

Work stealing. We implement our oracle scheme on top
of the work stealing scheduler [10]. In this section we out-
line the particular implementation of work stealing that we
selected from the Manticore system. Our purpose is to un-
derstand what exactly contributes to the scheduling cost τ in
our system.

In Manticore’s work-stealing scheduler, all system pro-
cessors are assigned to collaborate on the computation. Each
processor owns a deque (doubly-ended queue) of tasks rep-
resented as thunks. Processors treat their own deques like
call stacks. When a processor starts to evaluate a parallel-
pair expression, it creates a task for the second subexpres-
sion of the pair and pushes the task onto the bottom of the
deque. Processors that have no work left try to steal tasks
from others. More precisely, they repeatedly select a random
processor and try to pop a task from this processor’s deque.

Manticore’s implementation of work stealing [31] adopts
a code-specialization scheme, called clone translation, taken
from Cilk-5’s implementation [18].1 With clone translation,
each parallel-pair expression is compiled into two versions:
the fast clone and the slow clone. The purpose of a fast
clone is to optimize the code that corresponds to doing the
evaluation on the local processor, whereas the slow clone is
used when the second branch of a parallel-pair is migrated
to another processor. A common aspect of between clone
translation and our oracle translation (Figure 4) is that both
generate specialized code for the sequential case. But the
clone translation differs in that there is no point at which
parallelism is cut off entirely, as the fast clone may spawns
subtasks.

The scheduling cost involved in the fast clone is a (small)
constant, because it involves just a few local operations, but
the scheduling cost of the slow clone is variable, because
it involves inter-processor communication. It is well estab-
lished, both through analysis and experimentation, that (with
high probability) no more than O(Pd) steals occur during
the evaluation [10]. So, for programs that exhibit parallel
slackness (w � Pd), we do not need to take into account the

1 In the Cilk-5 implementation, it is called clone compilation.

cost of slow clones because there are relatively few of them.
We focus only on the cost of creating fast clones, which thus
correspond to the cost τ . A fast clone needs to packages a
task, push it onto the deque and later pop it from the deque.
So, a fast clone is not quite as fast than the corresponding
sequential code. The exact slowdown depend on the imple-
mentation, but in our case we have observed that a fast clone
is 3 to 5 times slower than a simple function call.

7. Empirical evaluation
In this section, we evaluate the effectiveness of our imple-
mentation through several experiments. We consider results
from a range of benchmarks run on two machines with dif-
ferent architectures. The results show that, in each case, our
oracle implementation improves on the plain work-stealing
implementation. Furthermore, the results show that the ora-
cle implementation scales well up to sixteen processors.

Machines. Our AMD machine has four quad-core AMD
Opteron 8380 processors running at 2.5GHz. Each core has
64Kb each of L1 instruction and data cache, a 512Kb L2
cache. Each processor has a 6Mb L3 cache that is shared
with the four cores of the processor. The system has 32Gb
of RAM and runs Debian Linux (kernel version 2.6.31.6-
amd64).

Our Intel machine has four eight-core Intel Xeon X7550
processors running at 2.0GHz. Each processor has 32Kb
each of L1 instruction and data cache and 256 Kb of L2
cache. Each processor has an 18Mb L3 cache that is shared
by all eight cores. The system has 1Tb of RAM and runs
Debian Linux (kernel version 2.6.32.22.1.amd64-smp). For
uniformity, we consider results from just sixteen out of the
thirty-two cores of the Intel machine.

Measuring scheduling costs. We report estimates of the
scheduling overheads for each of our test machines. To es-
timate, we use a synthetic benchmark expression e whose
evaluation sums integers between zero and 30 millions us-
ing a parallel divide-and-conquer computation. We choose
this particular expression because most of its evaluation time
is spent evaluating parallel pairs.

First, we measure ws: the time required for executing a
sequentialized version of the program (a copy of the pro-
gram where parallel tuples are systematically replaced with
sequential tuples). This measure serves as the baseline. Sec-
ond, we measure ww: the time required for executing the
program using work stealing, on a single processor. This
measure is used to evaluated τ . Third, we measure wo: the
time required for executing a version of the program with
parallel tuples replaced with ordinary tuples but where we
still use call the oracle to predict the time and measure the
time. This measure is used to evaluate φ.

We then define the work-stealing overhead cw = ww

ws
.

We estimate the cost τ of creating a parallel task in work
stealing by computing ww−ws

n , where n is the number of
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parallel pairs evaluated in the program. We also estimate the
cost φ of invoking the oracle and making a time measure
by computing wo−ws

m , where m is the number of times the
oracle is invoked. Our measures are as follows.

Machine cw τ (µs) φ (µs)
AMD 4.86 0.09 0.18
Intel 3.90 0.18 0.94

The first column indicates that work stealing alone can
induce a slowdown by a factor of 4 or 5, for programs that
create a huge number of parallel tuples. Column two indi-
cates that the cost of creating parallel task τ is significant,
taking roughly between 200 and 350 processor cycles. The
last column suggests that the oracle cost φ is of the same
order of magnitude (φ is 2 to 5 times larger than τ ).

To determine a value for κ, we use the formula µ(τ+γφ)
r

from §4. Recall that r is the targetted overhead for schedul-
ing costs. We aim for r = 10%. Our oracle appears to be
always accurate within a factor 2, so we take µ = 2. Our
benchmark programs are fairly regular, so we take γ = 3.
We then use the values for τ and φ specific to the machine
and evaluate the formula µ(τ+γφ)

r . We obtain 13µs for the
AMD machine 60µs for the Intel machine. However, we
were not able to use a cutoff as small as 13µs because the
time function that we are using is only accurate up to 1µs.
For this reason, we doubled the value to 26µs. (One possibil-
ity to achieve greater accuracy would be to use architecture-
specific registers that are able to report on the number of
processor cycles involved in the execution of a task.)

In our experiments, wehave used κ = 26µs on the AMD
machine and κ = 61µs on the Intel machine.

Benchmarks. We use five benchmarks in our empirical
evaluation. Each benchmark program was originally written
by other researchers and ported to our dialect of Caml.

The Quicksort benchmark sorts a sequence of 2 million
integers. Our program is adapted from a functional, tree-
based algorithm [5]. The algorithm runs withO(n log n) raw
work and O(log2 n) raw depth, where n is the length of the
sequence. Sequences of integers are represented as binary
trees in which sequence elements are stored at leaf nodes and
each internal node caches the number of leaves contained in
its subtree.

The Quickhull benchmark calculates the convex hull of a
sequence of 3 million points contained in 2-d space. The al-
gorithm runs with O(n log n) raw work and O(log2 n) raw
depth, where n is the length of the sequence. The represen-
tation of points is similar to that of Quicksort, except that
leaves store 2-d points instead of integers.

The Barnes-Hut benchmark is an n-body algorithm that
calculates the gravitational forces between n particles as
they move through 2-d space [2]. The Barnes-Hut compu-
tation consists of two phases. In the first, a quadtree is con-
structed from the sequence of particles. Using this tree, the
second phase computes this tree to accelerate the computa-

tion of the gravitational force for each of the n particles. The
algorithm runs with O(n log n) raw work and O(log n) raw
depth. Our benchmark runs 10 iterations over 100,000 par-
ticles generated from a random Plummer distribution [30].
The program is adapted from a Data-Parallel Haskell pro-
gram [23]. The representation we use for sequences of parti-
cles is similar to that of Quicksort.

The SMVM benchmark multiplies an m× n matrix with
an n × 1 dense vector. Our sparse matrix is stored in the
compressed sparse-row format. The program contains paral-
lelism both between dot products and within individual dot
products. We use a sparse matrix of dimensionm = 500,000
and n = 448,000, containing 50,400,000 nonzero values.

The DMM benchmark multiplies two dense, square n×n
matrices using the recursive divide-and-conquer algorithm
of Frens and Wise [17]. We have recursion go down to scalar
elements. The algorithm runs with O(n3) raw work and
O(log n) raw depth. We select n = 512.

Implementing complexity functions. Our aim is to make
complexity functions fast, ideally constant time, so that we
can keep oracle costs low. But observe that, in order to com-
plete in constant time, the complexity function needs access
to the input size in constant time. For four of our benchmark
programs, no modifications to the algorithm is necessary, be-
cause the relevant data structures are already decorated with
sufficient size information. The only one for which we make
special provisions is SMVM. The issue concerns a subprob-
lem of SMVM called segmented sums [8]. In segmented
sums, our input is an array of arrays of scalars, e.g.,

[[8, 3, 9], [2], [3, 1][5]]

whose underlying representation is in segmented format.
The segmented format consists of a pair of arrays, where
the first array contains all the elements of the subarrays and
second contains the lengths of the subarrays.

([8, 3, 9, 2, 3, 1, 5], [3, 1, 2, 1])

The second array is called the segment descriptor. The ob-
jective is to compute the sum of each subarray,

[20, 2, 4, 5],

There are two sources of parallelism in segmented sums: (1)
within the summation of each subarray and (2) between dif-
ferent subarray sums. We use divide-and-conquer algorithms
to solve each case. In the first case, our algorithm is just an
array summation, and correspondingly, the complexity func-
tion for which is straightforward to compute in constant time
from the segment descriptor. The second case is where we
make the special provisions. For this case, we use a paral-
lel array-map algorithm to compute all the subarray sums
in parallel. The issue is that the complexity of performing
a group of subarray sums is proportional to the sum of the
sizes of those subarrays. So, to obtain this size information
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in constant time, we modify our segmented-array represen-
tation slightly so that we store a cached tree of subarray sizes
rather than just a flat array of subarray sizes.

([8, 3, 9, 2, 3, 1, 4, 5], 7

4

3 1

3

2 1

)

To summarize, in order to write a constant-time complexity
function, we change the existing SMVM program to use
a tree data structure, where originally there was an array
data structure. Building the tree can be done in parallel, and
the cost of building can be amortized away by reusing the
sparse matrix multiple times, as is typically done in iterative
solvers.

Performance. For every benchmark, we measure several
values. Tseq denotes the time to execute the sequential ver-
sion of the program. We obtain the sequential version of the
program by replacing each parallel tuple with an ordinary tu-
ple and erasing complexity functions, so that the sequential
version includes none of the scheduling overheads. TPpar de-
notes the execution time with work stealing on P processors.
TPorc denotes the execution time of our oracle-based work
stealing on P processors.

The most important results of our experiments come from
comparing plain work stealing and our oracle-based work
stealing side by side. Figure 7 shows the speedup on sixteen
processors for each of our benchmarks, that is, the values
T 16
par/Tseq and T 16

orc/Tseq. The speedups show that, on sixteen
cores, our oracle implementation is always between 4% and
76% faster than work stealing.

The fact that some benchmarks benefit more from our or-
acle implementation than others is explained by Figure 8.
This plot shows execution time for one processor, normal-
ized with respect to the sequential execution times. In other
words, the values plotted are 1, T 1

orc/Tseq and T 1
par/Tseq. The

values T 1
orc/Tseq range from 1.03 to 1.13 (with an average

of 1.07), indicating that the scheduling overheads in the or-
acle implementation do not exceed 13% of the raw work
in any benchmark. The cases where we observe large im-
provements in speedup are the same cases where there is a
large difference bewteen sequential execution time and plain
work-stealing execution time. When the difference is large,
there is much room for our implementation to improve on
work stealing, whereas when the difference is small we can
only improve the execution time by a limited factor.

Figure 9 shows speedup curves for each of our experi-
ments, that is, values of TPpar/Tseq and TPorc/Tseq against the
number of processor P . Observe that on the Intel machine
there is super-linear scaling, but not on the AMD machine.
We attribute this behavior to cache effects. The curves show
that our oracle implementation generally scales well up to
sixteen processors.

There is one exception, which is the quickhull benchmark
on the AMD machine. For this benchmark, the curve tails
off after reaching twelve processors. We need to conduct
further experiments to understand the cause of this tailing
off, which is probably due to a lack of parallelism in the
program. Notice, however, that our scheduler does not fall
below work stealing.

8. Related work
Cutting off excess parallelism. Early work on granularity
control for functional programs focuses on using list size to
determine when to cutoff parallelism [22]. This approach is
limited because it assumes linear time for parallel subcom-
putations.

Lopez et al. study the granularity problem for logic pro-
grams [26]. Their approach uses complexity functions to
guide parallelism. On the surface, this is similar to our ora-
cle approach, except that their cost estimators do not take use
profiling to estimate constant factors. An approach without
constant-factor estimation is overly simplistic for modern
processors, because it relies on complexity function predict-
ing execution time exactly. On modern processors, execution
time depends heavily on factors such as caching, pipelining,
etc. and it is not feasible in general to predict execution time
from a complexity function alone.

Reducing per-task costs. One approach to the granularity
problem is to focus on reducing the the costs associated
with tasks, rather than limiting how many tasks get created.
This approach is taken by implementations of work stealing
with lazy task creation [13, 18, 21, 27, 31, 33]. In lazy task
creation, the work stealing scheduler is implemented so as
to avoid, in the common case, the major scheduling costs,
in particular, those of inter-processor communication. But,
in even the most efficient lazy task creation, there is still a
non-negligable scheduling cost for each implicit thread.

Lazy Binary Splitting (LBS) is an improvement to lazy
task creation that applies to parallel loops [36]. The crucial
optimization comes from extending the representation of
a task so that multiple loop iterations can be packed into
a single task. This representation enables the scheduler to
both avoid creating closures and executing deque operations
for most iterations. A limitation of LBS is that it addresses
only parallel loops whose iteration space is over integers.
Lazy Tree Splitting (LTS) generalizes LBS to handle parallel
aggregate operations that produce and consume trees, such
as map and reduce [3]. LTS is limited, however, by the fact
that it requires a special cursor data structure to be defined
for each tree data structure.

Amortizing per-task costs. Feitelson et al. study the gran-
ularity problem in the setting of distributed computing [1],
where the crucial issue is how to minimize the cost of inter-
processor communication. In their setting, the granularity
problem is modeled as a staging problem, in which there
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are two stages. The first stage consists of a set of processor-
local task pools and the second stage consists of a global task
pool. Moving a task to the global task pool requires inter-
processor communication. The crucial decision is how of-
ten each processor should promote tasks from its local task
pool to the global task pool. We consider a different model
of staging in which there is one stage for parallel evaluation
and one for sequential evaluation.

The approach proposed by Feitelson et al. is based on an
online algorithm called CG. In this approach, it is assumed
that the cost of moving a task to the global task pool is an
integer constant, called g. The basic idea is to use amorti-
zation to reduce the scheduling total cost of moving tasks
to the global task pool. In particular, for each task that is
moved to the global task pool, CG ensures that there are
at least g + 1 tasks added to the local task pool. Narlikar
describes a similar approach based on an algorithm called

DFDeques [28]. Just as with work stealing, even though the
scheduler can avoid the communication costs in the common
case, the scheduler still has to pay a non-negligable cost for
each implicit thread.

Flattening and fusion. Flattening is a well-known pro-
gram transformation for nested parallel languages [9]. Im-
plementations of flattening include NESL [7] and Data Par-
allel Haskell [29]. Flattening transforms the program into
a form that maps well onto SIMD architectures. Flattened
programs are typically much simpler to schedule at run
time than nested programs, because much of the schedule
is predetermined by the flattening. Controlling the granu-
larity of such programs is correspondingly much simpler
than in general. A limitation of existing flattening is that cer-
tain classes of programs generated by the translation suffer
from space inefficiency [6], as a consequence of the trans-
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Figure 9. Comparison between work stealing and oracle.
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formation making changes to data structures defined in the
program. Our transformation involves no such changes.

The NESL [7] and Data Parallel Haskell [29] compilers
implement fusion transformation in order to increase granu-
larity. Fusion transforms the program to eliminate redundant
synchronization points and intermediate arrays. Although
fusion reduces scheduling costs by combining adjacent par-
allel loops, it is not relevant to controlling granularity within
loops. As such, fusion is orthogonal to our oracle based ap-
proach.

Cost Semantics. To give an accurate accounting of task-
creation of overheads in implicitly parallel languages we use
a cost semantics, where evaluation steps (derivation rules)
are decorated with work and depth information or “costs”.
This information can then be used to directly to bound run-
ning time on parallel computers by using standard schedul-
ing theorems that realize Brent’s bound. Many previous ap-
proaches also use the same technique to study work-depth
properties, some of which also make precise the relationship
between cost semantics and the standard directed-acyclic-
graph models [4, 6, 35]. The idea of instrumenting evalu-
ations to generate cost information goes back to the early
90s [32, 34].

9. Future work
In this work, we have experimented our idea of oracle
scheduling by implementing it on top of a work-stealing
scheduler. It would be interesting to also investigate the
use of other schedulers, in particular schedulers based on
a shared queue. We could also try to apply this technique to
a distributed setting, where spawning parallel tasks not only
requires to migrate code but also to migrate data, which can
be very costly.

In our implementation, we have fixed κ to be a constant
value, but we could try to dynamically adjust it. However,
there is a major difficulty: obtaining accurate estimates for
the raw depth is much harder than for the raw work. Indeed,
for raw work it suffices to measure the time taken by a
sequential execution of a task. There is no such easy way
to measure the raw depth of a program.

To realize the oracle, we have assumed that the program-
mer would provide complexity functions explicitly. This
seems to be a reasonable assumption in general. However,
for particular domains of application it is possible to use
static analysis techniques to infer those complexity bounds.
We could also use dynamic analysis, in particular machine
learning techniques, for automatically guessing the shape of
the complexity function.

We have also assumed that the complexity functions
could be implemented in constant time. To achieve this in
the context of working with functional data structures, one
need to store size information in data structures. Fortunately,
this can be achieved at little cost if the compiler provides
specialized support for this, as done for example in [20].

This would make it possible to store sizes with little mem-
ory overhead and with little programmer intervention onto
the source code.
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