
1

OOPSLA Portland, 2011/10/26

Umut Acar – Arthur Charguéraud – Mike Rainey

Oracle Scheduling: Controlling Granularity
in Implicitly Parallel Languages

Max Planck Institute for Software Systems

2

Speedups with multicores

Obstacles:lack of parallelism, memory wall, scheduling overheads

Goal: get good speedups from using several cores

cores

speedup
perfect speedup

good speedup

3

Granularity control

Too many tasks:
→ large overheads

Not enough tasks:
→ limited parallelism

cores

speedup

cores

speedup

Scheduling overheads:they mainly depend on the number of tasks

Granularity control: problem of finding the right size for parallel tasks

→ we propose a new approach to granularity control
based on asymptotic complexity annotations

4

Importance of granularity control

int fibseq(int n) {
if (n < 2) return 1;
int a = fibseq(n-1);
int b = fibseq(n-2);
return a+b;

}

Sequential code: Parallel code:

int fibpar(int n) {
if (n < 2) return 1;
spawn int a = fibpar(n-1);
int b = fibpar(n-2);
sync;
return a+b;

}

10 seconds on a single core 20 seconds on 42 cores

→ 1.8 billion parallel tasks created

→ per-task overhead of a few dozens memory accesses

compute fibonnaci(45)

5

Introduction of a cutoff value

Parallel code with cutoff value:

int fibcut(int n) {
if (n < cutoff)
return fibseq(n)

spawn int a = fibcut (n-1);
int b = fibcut(n-2);
sync;
return a+b;

}

→ What is the right value to use as cutoff?

6

Execution time vs cutoff

parallelism now
starts lacking

overheads start
being amortized

many small tasks

few big tasks

Running fibpar(45) on 42 cores, using a work-stealing scheduler

good cutoffs

7

Selection of the cutoff value

– hard-coding a cutoff →→→→ non portable code
– trying all cutoffs (auto-tuning) →→→→ requires a tuning process

Our technique can
automatically select a
good cutoff at runtime

good cutoffs

8

Amortizing task creation overheads
Idea: Assume that every fork costs ττττ. If the cutoff value leads to tasks of
size κκκκ ≈ 100·ττττ, then the overheads are approximately equal to 1%.

Policy: tasks predicted to take less than κκκκ time are not parallelized

ττττ

ττττ

ττττ ττττ

κκκκ κκκκ κκκκ κκκκ

ττττ

ττττ ττττ

κκκκ κκκκ κκκκ κκκκ

Remark: κ depends on τ, which depends on the hardware and the
scheduler, but not on the algorithm, contrary to auto-tuning

9

Theory
Brent's theorem: (task creation overheads completely ignored)

Our theorem: (fork operation overhead = τ, sequentialize if exec time < κ)

we chose κ such
that τ/κ ≈ 1%

neglectable when lot
of parallel available

increased a lot but still
remains neglectable

10

How to predict execution times?
In addition to:

int fibseq(int n) int fibpar(int n)

int fibcost(int n) {
return 1.618 ** n;

}

We require the user to provide an asymptotic cost function:

We use runtime profiling to deduce the associated constant factor

Benefits:

→ complexity annotations are hardware independent

→ runtime profiling does not impose a per-algorithm tuning phase

Limitations:

→ cost functions must be cheap to evaluate

→ average complexity needs to match worst-case complexity

11

Code generation

int fib(int n) {
costs { return 1.618 ** n; }
if (n < 2) return 1;
spawn int a = fib(n-1);
int b = fib(n-2);
sync;
return a+b;

}

(translation implemented for the ML front-end, not yet for the C front-end)

compiled into:

int fibseq(int n) int fibpar(int n)

int fibcost(int n)

source code:

12

Convergence of the constant

pessimistic start

exponential decrease

fast convergence continue measuring

13

Accuracy of the predictions

85

90

95

100

105

110

115

85 90 95 100 105 110 115

Predicted time (microseconds)

M
ea

su
re

d
 ti

m
e

(m
ic

ro
se

co
n

ds
)

(measured on the cilksort benchmark)

14

Theory, generalized model

relatively smalljust a few percent

– let φ be the cost of making a time prediction and a time measure

– let µ be the maximal error factor for predictions

– let γ the max ratio between two time predictions (γ=2 for most programs)

Example:

τ = 100 ns µ = 2 T1 = 10^9 · 10ns

φ = 200 ns γ = 2 T∞ = 30

κ = 100,000 ns (= 0.1ms) P = 30

1% 2% of the first term

15

Benchmarks
Benchmarks: quickhull, quicksort, barnes-hut, dense matrix multiply,
sparse matrix multiply, KMP string search, Bellman-Ford algorithm, ...

Examples of complexity functions:

return 1.618 ** n

return n * log n

return n ** 3

return high - low

return prefixsum[high] - prefixsum[low]

Results:

→ appropriate cutoff values are selected

→ the overheads do not exceed a few percents

16

Speedup curve: fib of 45

insignificant task
creation overheads

good speedup, though not all
processors busy at the end

→ selected cutoff = 20

17

Speedup curve: cilksort on 10^8 integers

INTEL, UMA, 4 nodes with 8 cores each, 2GhzAMD, NUMA, 8 nodes with 6 cores each, 2Ghz

→ selected cutoff ≈ 13,000 items

memory wall memory wall

very good
very good

18

Speedup curve: KMP on 10^9 chars
AMD, NUMA, 8 nodes with 6 cores each, 2Ghz

9.0 seconds

0.25 seconds

→→→→ speedups achieved without tuning phase nor hardcoding of the cutoff

19

Conclusion

1) asymptotic complexity annotations + runtime profiling
→→→→ enable execution time predictions

Oracle Scheduling: Controlling Granularity in Implic itly Parallel Languages
Umut A. Acar, Arthur Charguéraud and Mike Rainey

Good granularity control with little effort!

2) sequentializing all tasks that are predicted to be small
→→→→ ensure that task creation overheads are well amortized

