Oracle Scheduling: Controlling Granularity
In Implicitly Parallel Languages

Umut Acar— Arthur Charguéraud — Mike Rainey

Max Planck Institute for Software Systems

OOPSLA Portland, 2011/10/26

1

Speedups with multicores

Goal: get good speedups from using several cores

speedup
4 perfect speedup

good speedup

cores

Obstacles:lack of parallelism, memory wall, scheduling ovextie

Granularity control

Scheduling overheadsthey mainly depend on the number of tasks

Too many tasks: Not enough tasks:
- large overheads - limited parallelism
speedupf speedupf
> >
cores cores

Granularity control: problem of finding the right size for parallel tasks

— We propose a new approach to granularity control
based on asymptotic complexity annotations

Importance of granularity control

Sequential code: Parallel code:
int fibseqg(int n) { int fibpar(int n) {
If (n < 2) return 1; If (n < 2) return 1;
int a = fibseq(n-1); spawn int a = fibpar(n-1);
int b = fibseq(n-2); int b = fibpar(n-2);
return a+b; sync;
} return a+b;
}

compute fibonnaci(45)

10 seconds on a single core 20 seconds on 42 cores

— 1.8 billion parallel tasks created
— per-task overhead of a few dozens memory accesses

Introduction of a cutoff value

Parallel code with cutoff value:

int fibcut(int n) {
if (n < cutoff)
return fibseq(n)
spawn int a = fibcut (n-1);
int b = fibcut(n-2);
sync;
return a+tb;

- What is the right value to use as cutoff?

Execution time vs cutoff

Running fibpar(45) on 42 cores, using a work-stepsicheduler

Execution time (seconds)

o

15

10

many small tasks
e

few big tasks

\

good cutoffs

10 T 20 3[]T 40 Cutoff
overheads start parallelism now
being amortized starts lacking

Selection of the cutoff value

15

Our technique can
automatically select a
good cutoff at runtime

l

good cutoffs

Execution time (seconds)
10
|

10 20 30 40 Cutoff

— hard-coding a cutoff - non portable code
— trying all cutoffs (auto-tuning) — requires a tuning process

Amortizing task creation overheads

ldea: Assume that every fork costg. If the cutoff value leads to tasks of
sizek = 100T, then the overheads are approximately equal to 1%.

Policy: tasks predicted to take less thar time are not parallelized

Remark: K depends om, which depends on the hardware and the
scheduler, but not on the algorithm, contrary tmduning

Theory

Brent's theorem: (task creation overheads completely ignored)

11
TP S — + Toc::
N
neglectable when lot
of parallel available

Our theorem: (fork operation overhead & sequentialize if exec timel

T
Tp < (1+3)- Lo kT

_ K P \
we chose& such iIncreased a lot but still

thatt/k = 1% remains neglectable

How to predict execution times?

In addition to:
Int fibseqg(int n) int fibpar(int n)

We require the user to provide an asymptotic costuinction:

int fibcost(int n) {
return 1.618 ** n;

}
We use runtime profiling to deduce the associatedastant factor

Benefits:
— complexity annotations are hardware independent
- runtime profiling does not impose a per-algorithminhg phase

Limitations:
- cost functions must be cheap to evaluate
- average complexity needs to match worst-case codmple

10

Code generation

source code: |int fib(int n) {
costs { return 1.618

If (n < 2) return 1;

int b = fib(n-2);
sync;
return a+b;

spawn int a = fib(n-1);

* * n: }

compiled into: / \

Int fibseqg(int n)

int fibpar(int n)

i nt fibcost(int n)

(translation implemented for the ML front-end, get for the C front-end)

11

Convergence of the constant

value of the constant (in microsecond/unit), on a log scale

1.00

0.05 0.10 0.20 0.50

0.02

0.01

— I'd

<« pessimistic start

exponential decrease

« fast convergence

continue measuring

0.000 0.002 0.004 0.006 0.008 0.010

timeline of the program execution (seconds)

12

Accuracy of the predictions

(measured on the cilksort benchmark)

115
110

Lo
»

(Spuo92as042lW) sawll painsean

90

85

95 100 105 110 115
Predicted time (microseconds)

90

85

13

Theory, generalized model

— let @ be the cost of making a time prediction and a tn@asure
— letp be the maximal error factor for predictions
— lety the max ratio between two time predictiogsd for most programs)

(T + v T .
Ip < (1+l()>-—l + (kp+o+1) T
K dr
| |]
just a few percent relatively small

Example: 1% 2% of the first term

1=100ns h=2 T, =10"9- 10ns
¢@= 200 ns y=2 T,=30

K = 100,000 ns (= 0.1ms) P =30

14

Benchmarks

Benchmarks: quickhull, quicksort, barnes-hut, dense matrix mlyt

sparse matrix multiply, KMP string search, Bellnfaord algorithm, ...

Examples of complexity functions:

return 1.618 ** n
return n * log n
return n ** 3
return high - | ow

return prefixsunfhigh] - prefixsunfl ow

Results:
— appropriate cutoff values are selected
- the overheads do not exceed a few percents

15

Speedup curve: fib of 45

_ selected cutoff = 20

Speedup
10 20 30 40

insignificant task
g ~—_

creation overheads 5

good speedup, though not all

processors busy at the end\A

10 20 30 40

Proc

16

Speedup curve: cilksort on 1078 integers

Speedup

_ Sselected cutoff 13,000 items

AMD, NUMA, 8 nodes with 6 cores each, 2Ghz

20 30 40

10

| very good
\ memory wall
X//’/‘V S —
i | | | |
0 10 20 30 40

Proc

Speedup

INTEL, UMA, 4 nodes with 8 cores each, 2Ghz

10 15 20 25 30

5

0

very good

memory wall

17

Speedup curve: KMP on 1079 chars

AMD, NUMA, 8 nodes with 6 cores each, 2Ghz

40

0.25 seconds

30
I

Speedup
20

o
—

9.0 seconds——ps—2

I I I I I
0 10 20 30 40

— Speedups achieved without tuning phase nor hardcaaly of the cutoff

18

Conclusion

1) asymptotic complexity annotations + runtime proiling
— enable execution time predictions

2) sequentializing all tasks that are predicted tdbe small
— ensure that task creation overheads are well amored

Good granularity control with little effort!

Oracle Scheduling: Controlling Granularity in Implic itly Parallel Languages
Umut A. Acar, Arthur Charguéraud and Mike Rainey

19

